Scientists discover new compound which could improve photodynamic therapy for cancer

February 26, 2020

PDT does not always kill cells deep within a cancerous tumour, allowing tumours to grow back again.

The new compound uses penetrating infrared light to damage cells directly and potentially improve the success rate of PDT

Researchers at the University of Sheffield have synthesized a new compound which could improve the success rate of photodynamic therapy when treating cancer.

The key to photodynamic therapy (PDT) is a compound known as a sensitizer, a light-sensitive medicine given to the patient, which when activated by light produces highly reactive oxygen-based species which kill the cancer cells. However, current PDT treatment has two main drawbacks when it comes to killing tumours.

First, currently used sensitizers are only activated by light energies that do not penetrate tissues, like skin, very deeply. Second, many tumours have low amounts of oxygen, so photoactivated sensitizers cannot generate the toxic compounds which kill cancer cells.

Now scientists at the University of Sheffield have developed a new compound which solves both of these problems in one go. Not only is the new compound activated by infrared or red light which can penetrate deep into the tumour, but it also directly damages DNA within cells without having to rely on oxygen.

Researchers at the University of Sheffield have tested the compound in skin cancer tumour models and observed that it killed cancer cells deep into these model tumours. The next step in the research will look at skin models, testing whether the compound can kill the tumour but leave healthy skin undamaged.

Professor Jim Thomas, from the University of Sheffield's Department of Chemistry, who led the study said: "PDT is potentially a very attractive way to treat diseases such as skin cancer as it only works when the laser light is applied, so the effect can be focused into a specific place on or in the body.

"The sensitizer we have developed can potentially solve the two main problems that prevent PDT from being a commonly used anticancer treatment."

The research, published in the Journal of the American Chemical Society, was carried out by scientists from the University of Sheffield's Departments of Chemistry and Materials Science and Engineering and the Science and Technology Facilities Council (STFC) Central Laser Facility.
-end-
Media contact: Emma Griffiths, Media and PR Assistant, University of Sheffield, 0114 222 1034, e.l.griffiths@sheffield.ac.uk

Notes to editors:

The University of Sheffield

With almost 29,000 of the brightest students from over 140 countries, learning alongside over 1,200 of the best academics from across the globe, the University of Sheffield is one of the world's leading universities.

A member of the UK's prestigious Russell Group of leading research-led institutions, Sheffield offers world-class teaching and research excellence across a wide range of disciplines.

Unified by the power of discovery and understanding, staff and students at the university are committed to finding new ways to transform the world we live in.

Sheffield is the only university to feature in The Sunday Times 100 Best Not-For-Profit Organisations to Work For 2018 and for the last eight years has been ranked in the top five UK universities for Student Satisfaction by Times Higher Education.

??Sheffield has six Nobel Prize winners among former staff and students and its alumni go on to hold positions of great responsibility and influence all over the world, making significant contributions in their chosen fields.

Global research partners and clients include Boeing, Rolls-Royce, Unilever, AstraZeneca, Glaxo SmithKline, Siemens and Airbus, as well as many UK and overseas government agencies and charitable foundations.

University of Sheffield

Related Cancer Cells Articles from Brightsurf:

Cancer researchers train white blood cells to attacks tumor cells
Scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and Dresden University Medicine, together with an international team of researchers, were able to demonstrate that certain white blood cells, so-called neutrophil granulocytes, can potentially - after completing a special training program -- be utilized for the treatment of tumors.

New way to target some rapidly dividing cancer cells, leaving healthy cells unharmed
Scientists at Johns Hopkins Medicine and the University of Oxford say they have found a new way to kill some multiplying human breast cancer cells by selectively attacking the core of their cell division machinery.

Breast cancer cells use message-carrying vesicles to send oncogenic stimuli to normal cells
According to a Wistar study, breast cancer cells starved for oxygen send out messages that induce oncogenic changes in surrounding normal epithelial cells.

Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.

Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.

Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.

First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.

Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.

Read More: Cancer Cells News and Cancer Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.