Nav: Home

New patented invention stabilizes, rotates satellites

February 26, 2020

Many satellites are in space to take photos. But a vibrating satellite, like a camera in shaky hands, can't get a sharp image. Pointing it at a precise location to take a photo or perform another task, is another important function that requires accuracy. Vedant, an aerospace engineering doctoral student at the University of Illinois at Urbana-Champaign was working on a way to eliminate vibrations on a satellite when he discovered his invention could also rotate the satellite.

"We developed, with NASA"s Jet Propulsion Lab, a way to cancel out the vibrations of a satellite by vibrating the solar panels in the opposite direction--active noise cancellation," Vedant said. "After developing a mathematical model and using random inputs, I realized I could make the satellite move away from the original resting point, which was unexpected. On further analysis, I discovered that a new capability existed in the system--in addition to the vibration isolation, it can actually rotate the satellite in space arbitrarily."

Vedant explained that in space, you only have the capabilities of throwing masses around, using only the satellite's internal forces to move. He likened the controlled movements of the satellite's solar panels to the movements a cat makes when falling to land on its feet--twisting its body by stretching out its legs, then pulling them in tightly.

"The solar panels are long and flexible," Vedant said. "If you swing one down, it will rotate your spacecraft by a small amount of angle. When you contract it, that shouldn't change the angle at all, because that's just a contraction. But, I'm also changing the length of the solar panel--that changes the moment of inertia, which moves it back a slightly different amount. And if you do this repeatedly, you can then begin adding these angles. That's what's new about this multifunctional structures for attitude control."

Vedant described how he first recognized the potential to rotate the satellite. For the original project with JPL, there was an outreach component so Vedant created a game for STEM students to play.

"I mapped it to the keyboard keys, so that each key made it oscillate in one direction," he said. "I was pressing random keys to see if the system works or not and it did something very unusual. It stopped shaking, but instead of moving back to its original position, it moved to a different place and stopped. I thought that was a mathematical error. So I dug more into it. And it turned out to be a new way of moving the panel."

Vedant said U of I has obtained a patent on his invention. Since it went public in early February, there has been a surge of interest in it from companies that design, build, and launch satellites.

He created a video of the prototype, which was made from a 3D printer.

"My next effort is to make something that is that is more realistic and can fly in space," Vedant said. "We'll also be looking at ways to integrate the electronics into the solar panels, to save on the volume and weight."
Vedant plans to continue to develop the technology and eventually license it to companies. He received a master's degree in aerospace engineering in 2018. His doctoral adviser is James Allison in the Department of Industrial and Enterprise Systems Engineering at Illinois and an affiliated faculty member with the Dept. of Aerospace Engineering. Vedant's co-adviser is Alexander Ghosh.

University of Illinois College of Engineering

Related Solar Panels Articles:

Solar wind samples suggest new physics of massive solar ejections
A new study led by the University of Hawai'i (UH) at Mānoa has helped refine understanding of the amount of hydrogen, helium and other elements present in violent outbursts from the Sun, and other types of solar 'wind,' a stream of ionized atoms ejected from the Sun.
Ben-Gurion University researchers develop new method to remove dust on solar panels
Particle removal increased from 41% on hydrophilic smooth Si wafers to 98% on superhydrophobic Si-based nanotextured surfaces.
Parker Solar Probe traces solar wind to its source on sun's surface: coronal holes
New data from the Parker Solar Probe, which got closer to the sun than any other spacecraft, allowed physicists to map the source of a major component of the solar wind that continually peppers Earth.
Study: Even short-lived solar panels can be economically viable
A new study shows that, contrary to widespread belief within the solar power industry, new kinds of solar cells and panels don't necessarily have to last for 25 to 30 years in order to be economically viable in today's market.
Researchers develop a better way to harness the power of solar panels
Researchers at the University of Waterloo have developed a way to better harness the volume of energy collected by solar panels.
Installing solar panels on agricultural lands maximizes their efficiency, new study shows
A new study finds that if less than 1% of agricultural land was converted to solar panels, it would be sufficient to fulfill global electric energy demand.
Solar panels cast shade on agriculture in a good way
Combining solar panel (photovoltaic) infrastructure and agriculture creates a mutually beneficial relationship.
Solar energy becomes biofuel without solar cells
Soon we will be able to replace fossil fuels with a carbon-neutral product created from solar energy, carbon dioxide and water.
Breakthrough material could lead to cheaper, more widespread solar panels and electronics
Two physics research groups at the University of Kansas have generated free electrons from organic semiconductors when combined with a single atomic layer of molybdenum disulfide, a recently discovered two-dimensional semiconductor.
What happens when schools go solar?
Rooftop solar projects at schools could reduce harmful air pollution, help the environment and enhance student learning while cutting electricity costs, a new study finds.
More Solar Panels News and Solar Panels Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at