Gold nanoparticles detect signals from cancer cells

February 26, 2020

A novel blood test that uses gold nanoparticles to detect cancer has also been shown to identify signals released by cancer cells which could result in earlier diagnosis and better treatment.

New research has revealed the nanotechnology developed by University of Queensland scientists can detect and monitor extracellular vesicles (EVs) in the bloodstream.

Australian Institute for Bioengineering and Nanotechnology (AIBN) researcher Jing Wang said the discovery could lead to more effective, personalised cancer therapy by allowing oncologists to rapidly determine how treatment is progressing.

"EVs are an exciting next-generation of potential biomarkers in blood," she said.

"They are nanoparticles that are constantly emitted by health cells and cancer cells to enable cell-to-cell communication.

"They are like tiny bubbles that transport cargoes such as DNA, proteins and other molecules between cells, and this cargo reveals a lot about what's going on inside the cell.

"Cancer cells use the EV nanoparticles in order to manipulate the cells around them, as well as to suppress and manipulate the immune system."

In collaboration with oncologists Dr Andreas Behren and Professor Jonathan Cebon at the Olivia Newton John Cancer Research Institute (ONJCRI), the technology has been tested on blood samples from melanoma patients and was able to detect the presence of cancer-derived EVs and could also track critical changes during and after treatment.

AIBN researcher Dr Alain Wuethrich said cancer EVs have been difficult to distinguish from EVs emitted from healthy cells, which are more abundant in the bloodstream.

"The technology brings together two entirely new approaches within a clinical setting for potential treatment monitoring," Dr Wuethrich said.

"We used an electrically activated nano-fluidic chip that helps capture only cancer emitted EVs.

"We coupled this with a special type of gold nanoparticle attached to antibodies that stick to molecules found only on the surface of cancer EVs."

The gold nanoparticles emit a unique signal when hit with laser light and this can be used to detect an EV fingerprint specific to the patient.

With the help of the collaborators at the ONJCRI, the technology was tested on blood samples from 23 melanoma patients.

The new device accurately detected cancer EVs in the blood samples, and successfully tracked how the cancer EV fingerprint changed in response to therapy for each patient.

"Our technology can reveal changes in the cancer EV fingerprint, so it could be used to quickly find out whether a therapy is working or if drug resistance is happening," Ms Wang said.

"This could guide cancer therapy in real-time."

The AIBN team lead by Professor Matt Trau has previously demonstrated that gold nanoparticles can be used to detect Circulating Tumour Cells (CTCs) and unique fragments of DNA released by cancer cells.

By showing that EVs can also be detected with the help of these nanoparticles adds a critical new weapon to the cancer-detection arsenal.

"This technology could complement and eventually replace more costly cancer imaging technologies, and could potentially become regularly used at point-of-care in a doctor's surgery," Ms Wang said.
-end-
The study is published in Science Advances.

MEDIA - Professor Matt Trau, m.trau@uq.edu.au, 0412 560 343; AIBN Communications, f.mcmillan@uq.edu.au

University of Queensland

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.