Nav: Home

UCLA engineers develop miniaturized 'warehouse robots' for biotechnology applications

February 26, 2020

UCLA engineers have developed minuscule warehouse logistics robots that could help expedite and automate medical diagnostic technologies and other applications that move and manipulate tiny drops of fluid. The study was published in Science Robotics.

The robots are disc-shaped magnets about 2 millimeters in diameter, designed to work together to move and manipulate droplets of blood or other fluids, with precision. For example, the robots can cleave one large droplet of fluid into smaller drops that are equal in volume for consistent testing. They can also move droplets into preloaded testing trays to check for signs of disease. The research team calls these robots "ferrobots" because they are powered by magnetism.

The ferrobots can be programmed to perform massively parallelized and sequential fluidic operations at small-length scales in a collaborative manner. To control the robots' motion, electromagnetic tiles in the chip pull the ferrobots along desired paths, much like using magnets to move metal chess pieces from underneath a chess board.

"We were inspired by the transformational impact of networked mobile robot systems on manufacturing, storage and distribution industries, such as those used to efficiently sort and transport packages at Amazon warehouses," said Sam Emaminejad, an assistant professor of electrical and computer engineering and the study's corresponding senior author. "So, we set out to implement the same level of automation and mobility in a microfluidic setting. But our 'factory floor' is much smaller, about the size of your palm, and our goods, the fluid droplets, are as small as a few tenths of a millimeter."

The "factory floor" is an index card-sized chip, designed by the researchers, with internal structures that help manipulate fluid droplets transported by the robots, as demonstrated in this video: https://www.youtube.com/watch?v=wuOHoJ1qaXs

"In the same way that mobile and cross-collaborative Amazon robots transformed the logistics-based industries, our technology could transform various biotech-related industries, including medical diagnostics, drug development, genomics, and the synthesis of chemicals and materials," said study co-corresponding and senior author Dino Di Carlo, UCLA's Armond and Elena Hairapetian Professor in Engineering and Medicine. "These fields have traditionally used refrigerator-sized 'liquid-handling' robots. Using our much smaller ferrobots, we have the potential to do a lot more experiments - and generate significantly more data - with the same starting materials and in the same amount of time."

The researchers showed in one of their experiments how an automated network of three robots could work in concert to move and manipulate droplets of human plasma samples on a chip in search of molecular markers that would indicate the presence of cancer.

"We programmed when and where the tiles were switched on and off to guide ferrobots through their designated routes," said Wenzhuo Yu, a UCLA electrical and computer engineering graduate student and a co-lead author on the paper. "This allows us to have several robots working in the same space, and at a relatively fast pace to accomplish tasks efficiently."

The robots moved at 10 centimeters per second and performed more than 10,000 cyclic motions during a 24-hour period in the experiments. In addition to transportation, other functions such as dispensing, merging and filtering of fluid samples were demonstrated as ferrobots interacted with structures on the on the chip.
-end-
The other co-lead authors of the study are UCLA graduate students Haisong Lin and Yilian Wang, in electrical and computer engineering, and bioengineering, respectively.

Xu He, Nathan Chen, Kevin Sun, Darren Lo, Brian Cheng, Christopher Yeung and Jiawei Tan, members of either Emaminejad's or Di Carlo's research groups at UCLA Samueli, also authored the study. The robots and their chips were fabricated at the UCLA Nanoelectronics Research Facility. An application for a patent on the technology has been filed.

University of California - Los Angeles

Related Engineering Articles:

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.
Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.
Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.
New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.
Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.
Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.
Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.
What can snakes teach us about engineering friction?
If you want to know how to make a sneaker with better traction, just ask a snake.
Engineering a plastic-eating enzyme
Scientists have engineered an enzyme which can digest some of our most commonly polluting plastics, providing a potential solution to one of the world's biggest environmental problems.
A new way to do metabolic engineering
University of Illinois researchers have created a novel metabolic engineering method that combines transcriptional activation, transcriptional interference, and gene deletion, and executes them simultaneously, making the process faster and easier.
More Engineering News and Engineering Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.