Nav: Home

Metals could be the link to new antibiotics

February 26, 2020

Compounds containing metals could hold the key to the next generation of antibiotics to combat the growing threat of global antibiotic resistance.

University of Queensland researchers, working with a network of international collaborators, have discovered 23 previously unexplored compounds containing metals such as silver, manganese, zinc, ruthenium and iridium that have antibacterial and antifungal activity.

The study was led by Dr Mark Blaskovich, Dr Angelo Frei and Dr Johannes Zuegg of UQ's Centre for Superbug Solutions at the Institute for Molecular Bioscience.

"This is promising research because the scientific community is struggling to keep up with the pace of bacterial resistance," Dr Blaskovich said.

They found many of the metal compounds selectively kill cells of bacteria, including the potentially deadly methicillin resistant Staphylococcus aureus (MRSA), but not human cells.

"There are around 40 new antibiotics in clinical trials, which sounds encouraging until you compare this to the more than 1000 medicines and vaccines in clinical trials for cancer treatments," he said.

Dr Frei said almost 75 per cent of the antimicrobial medicines under development were derivatives of known and used antibiotics, making them potentially susceptible to existing bacterial resistance.

"Finding completely new types of antibiotics in these metal-containing compounds offers promise to outwit bacterial resistance, because they likely use different mechanisms which the bacteria have not encountered previously," Dr Frei said.

"In addition to activity against MRSA, some compounds were active against dangerous Gram-negative pathogens such as Escherichia coli and Acinetobacter baumannii, which have even fewer novel antibiotic treatments."

The research was conducted through the Community for Open Antimicrobial Drug Discovery (CO-ADD)--which was established in the labs of Professor Matt Cooper to offer a simple and free screening service to scientists worldwide with funding from the Wellcome Trust and UQ.

"We embarked on a quest to tap into the millions of compounds sitting unused on laboratory shelves, discarded because they don't fit the mould for common drug design," Dr Blaskovich said.

"We test these compounds to see if they have an effect on bacterial and fungal pathogens.

"So far we have received and screened 300,000 compounds, including nearly 1000 metal-containing compounds, from over 300 academic groups across 47 countries."

The research team hopes the findings will bring prompt new investment in antimicrobial research.

"Many pharmaceutical companies are bowing out of antibiotic research as there is little return on investment," Dr Frei said.

"So it is vital to raise awareness that metal complexes are a prospective source of truly novel antibiotics with potential for combatting antimicrobial resistance."

This research has been published in Chemical Science and is free to read.
-end-


University of Queensland

Related Bacteria Articles:

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.