Transplanted Neurons Restore Function In Rats After Stroke

February 26, 1998

Transplants of human neurons derived from a tumor restored the movement and behavioral function of rats subjected to experimental stroke in a joint study by researchers at the University of South Florida College of Medicine and the University of Pennsylvania Medical Center. The new findings are reported in the just-published February issue of the journal Experimental Neurology.

The neurons originated in an embryonal cancer cell line that was treated with retinoic acid in a process to differentiate the cells and to render them benign.

Significantly, when the human neuronal cells were frozen and then thawed prior to transplantation, they proved equally as effective as fresh cells in easing the symptoms of stroke in rats. Furthermore, the tumor-derived cells did not revert to abnormal tissue growth after transplantation into the brains of rats.

"This suggests that human neuronal cell transplantation may be a useful alternative to fetal tissue in treating strokes and other neurodegenerative disorders," says Paul R. Sanberg, PhD, professor and director of neurosurgical research at USF and senior author on the study. "The grafts' resistance to the effects of cryopreservation is rather remarkable. Frozen fetal brain cells do not survive long after they are thawed."

Experimental transplantation using fetal brain cells has been successful in a small number of patients with Parkinson's disease, but the potential for widespread use of fetal tissue is limited, partly because of difficulties associated with preservation.

"The clinical potential is that a readily available supply of cryopreserved human neuronal cells, made under controlled conditions and stored frozen, could be used as replacement therapy to reverse the deficits of stroke," notes Virginia M.-Y. Lee, PhD, a professor of pathology and laboratory medicine at Penn and a coauthor on the study.

Lee and Penn colleague John Q. Trojanowski, MD, PhD, also a professor of pathology and laboratory medicine and study coauthor, developed a procedure to isolate and purify the NT2N neurons from a culture of mixed cells removed from a cancerous human tumor. Treatment with retinoic acid altered the cells so that they became noncancerous and differentiated to take on the characteristics of neurons.

The process has been patented by the University of Pennsylvania Medical Center and licensed to Layton BioScience Inc. of Atherton, California, which provided the cells used in the USF study. Layton BioScience is developing the cells, known commercially as hNT-Neurons, for the treatment of several neurological disorders.

In the experiments, the USF researchers implanted the hNT-Neurons into the brains of rats. In rats receiving immunosuppressive drugs to control graft rejection, function was restored and maintained for more than six months following transplantation.

"The hNT-Neurons were just as beneficial as fetal brain cells alone in improving movement and behavioral recovery," observes Sanberg.

The University of South Florida Health Sciences Center has graduated 2,000 doctors, 3,300 nurses, and 1,000 public health professionals. In 1996-1997, 350 faculty-physicians in the College of Medicine handled 470,000 patient visits, HSC sponsored research topped $50 million, and USF physicians provided $20 million worth of uncompensated care.

The University of Pennsylvania Medical Center's sponsored research and training ranks third in the United States based on grant support from the National Institutes of Health, the primary funder of biomedical research and training in the nation -- $175 million in federal fiscal year 1997. In addition, for the third consecutive year, the institution posted the highest annual growth in these areas -- 17.6 percent -- of the top ten U.S. academic medical centers. News releases from the University of Pennsylvania Medical Center are available to reporters by direct e-mail, fax, or U.S. mail, upon request. They are also posted electronically to the medical center's home page (http://www.med.upenn.edu), to EurekAlert! (http://www.eurekalert.org), an Internet resource sponsored by the American Association for the Advancement of Science, and to the electronic news services SciNews-MedNews and Quadnet.
-end-


University of Pennsylvania School of Medicine

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.