Magnetic resonance microscopy research lands professor NSF award

February 27, 2007

A Montana State University professor has won a prestigious $400,000 Career Award from the National Science Foundation for her work in magnetic resonance microscopy, a technique that allows researchers to see the inner workings of devices as small as one-tenth of a millimeter in size.

Sarah Codd's work assists research on fuel cells, medical catheters and the cleanup of contaminated soil and water. The NSF Career Award is notable because it goes to a single person, whereas most NSF grants support teams of researchers. It is NSF's most prestigious award to support the early career development of teacher-scholars. Codd is MSU's thirteenth winner since 1995.

Codd will use the funds - paid out over five years - to advance her research, teaching and public education of how magnetic resonance microscopy can be used to help solve a variety of pressing engineering problems.

This is the second major NSF award Codd has garnered in the past three years. She was awarded a $387,000 NSF Advanced Fellowship in 2004. Originally from New Zealand, she came to MSU in 2002.

Magnetic resonance microscopy (MRM) is based on the same principles as its better-known hospital cousin, magnetic resonance imaging, or MRI. However, MRM technology lets researchers see movies of fluids and gases moving through objects honeycombed with tiny channels.

"We know a lot about how water, or other fluids, flow through large channels, like rivers and the plumbing in your house, but there is a lot that's not understood about how fluids move through micro-channels," Codd said.

At this scale - smaller than the width of a human hair - the laws of physics, as most people know them, change: water can flow against gravity and molecules can stretch.

"Fluids behave very differently at small levels," Codd said. "We are able to create computer simulations based on physics about how fluids behave, but with MRM we can see inside objects to see if those simulations are correct and if that's how things really work."

About the size of a small chest freezer tipped on end, the MRM device allows Codd to look inside complex ceramics developed by MSU professor Stephen Sofie in his research on fuel cells. Codd, with Phil Stewart, director of MSU's Center of Biofilm Engineering, looks inside tiny catheters to see how bacteria foul the lines. With the MRM, chemical and biological engineering professor Robin Gerlach is seeing how bacteria can be used to clean up soil and water contamination.

The Magnetic Resonance Microscopy Laboratory is housed within the College of Engineering, but collaborations reach across campus, the nation and world.

"We're not just researchers on our own specific problem," Codd said. "This is very interdisciplinary work."

The MRM lab currently has three undergraduate and six graduate students and a post-doctoral researcher working on different projects. Codd plans to use a portion of her NSF Career Award to create a course offering an overview of techniques available for engineers exploring the very small: MRM, optical microscopy, confocal microscopy, x-rays, scanning electron microscopes and atomic force microscopy.

"As the world moves to the nano scale, we're seeing a greater need for observations at that scale," Codd said. "But no single technique tells the whole story. Though very powerful, even MRM can't tell the whole story. It has to work in concert with other techniques. Our students need a background in what's available so they can help contribute to the development of these complex new materials."
-end-


Montana State University

Related Fuel Cells Articles from Brightsurf:

Fuel cells for hydrogen vehicles are becoming longer lasting
An international research team led by the University of Bern has succeeded in developing an electrocatalyst for hydrogen fuel cells which, in contrast to the catalysts commonly used today, does not require a carbon carrier and is therefore much more stable.

Scientists develop new material for longer-lasting fuel cells
New research suggests that graphene -- made in a specific way -- could be used to make more durable hydrogen fuel cells for cars

AI could help improve performance of lithium-ion batteries and fuel cells
Imperial College London researchers have demonstrated how machine learning could help design lithium-ion batteries and fuel cells with better performance.

Engineers develop new fuel cells with twice the operating voltage as hydrogen
Engineers at the McKelvey School of Engineering at Washington University in St.

Iodide salts stabilise biocatalysts for fuel cells
Contrary to theoretical predictions, oxygen inactivates biocatalysts for energy conversion within a short time, even under a protective film.

Instant hydrogen production for powering fuel cells
Researchers from the Chinese Academy of Sciences, Beijing and Tsinghua University, Beijing investigate real-time, on-demand hydrogen generation for use in fuel cells, which are a quiet and clean form of energy.

Ammonia for fuel cells
Researchers at the University of Delaware have identified ammonia as a source for engineering fuel cells that can provide a cheap and powerful source for fueling cars, trucks and buses with a reduced carbon footprint.

Microorganisms build the best fuel efficient hydrogen cells
With billions of years of practice, nature has created the most energy efficient machines.

Atomically precise models improve understanding of fuel cells
Simulations from researchers in Japan provide new insights into the reactions occurring in solid-oxide fuel cells by using realistic atomic-scale models of the electrode active site based on microscope observations instead of the simplified and idealized atomic structures employed in previous studies.

New core-shell catalyst for ethanol fuel cells
Scientists at Brookhaven Lab and the University of Arkansas have developed a highly efficient catalyst for extracting electrical energy from ethanol, an easy-to-store liquid fuel that can be generated from renewable resources.

Read More: Fuel Cells News and Fuel Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.