Nav: Home

Newly discovered algal species helps corals survive in the hottest reefs on the planet

February 27, 2015

A new species of algae has been discovered in reef corals of the Persian (Arabian) Gulf where it helps corals to survive seawater temperatures of up to 36 degrees Celsius - temperatures that would kill corals elsewhere.

Researchers from the University of Southampton and the New York University Abu Dhabi identified the symbiotic algae in corals from Abu Dhabi, United Arab Emirates, the world's warmest coral reef habitat.

The paper, which reports the breakthrough discovery, was published this week in the journal Scientific Reports from where it can be freely accessed via http://dx.doi.org/10.1038/srep08562.

"We found that commonly applied molecular methods did not give enough resolution to distinguish the dominant symbionts of Gulf corals from those in other parts of the world's oceans," explains Professor Jörg Wiedenmann, Professor of Biological Oceanography and Head of the Coral Reef Laboratory at the University of Southampton. "However, when analysed by alternative molecular biological approaches, we found pronounced differences that set this heat tolerant species clearly aside. We named it Symbiodinium thermophilum in reference to its ability to survive unusually high temperatures."

Reefs are made up of many coral species, most of which live in a mutually beneficial relationship with microscopically small algae hosted in their tissue. These symbiont algae produce sugars that contribute to the diet of the coral in return for shelter and nutrients that are vital for algal growth.

However, the symbiotic association is vulnerable to changes in environmental conditions, in particular to increases in seawater temperature. Heat-stress induced loss of the algal partners from the coral host can result in the often fatal process known as 'coral bleaching'.

"Understanding how corals survive under the extreme temperatures in the Gulf will give us important insights into the ability of reef corals to handle the heat stress, which is threatening their survival in the oceans that are warming up in response to climate change," explains Professor Wiedenmann.

"We monitored the symbiotic partnership over several seasons to ensure that this association was stable through a range of thermal conditions," comments Professor John Burt from the New York University Abu Dhabi. "We can confirm that this new type of alga is indeed the year-round prevalent symbiont across several dominant coral species from the Abu Dhabi coast of the United Arab Emirates," he adds.

"It gives hope to find that corals have more ways to adjust to stressful environmental conditions than we had previously thought," adds Professor Wiedenmann. "However, it is not only heat that troubles coral reefs. Pollution and nutrient enrichment, overfishing and coastal development also represent severe threats to their survival. Only if we manage to reduce these different forms of stress will corals be able to benefit from their capacity to adjust to climate change."
-end-
References:

Hume, B.C.C. et al. Symbiodinium thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world's hottest sea, the Persian/Arabian Gulf. Sci. Rep. 5, 8562; DOI:10.1038/srep08562 (2015). Free download: http://dx.doi.org/10.1038/srep08562

D'Angelo, C. and Wiedenmann, J. "Impacts of Nutrient Enrichment on Coral Reefs: New Perspectives and Implications for Coastal Management and Reef Survival." Current Opinion in Environmental Sustainability 7, no. 0 (2014): 82-93. Free download: http://www.sciencedirect.com/science/article/pii/S1877343513001917

Wiedenmann, J, D'Angelo, C., Smith, E.G., Hunt, A.N., Legiret, F.E., Postle, A.D. and Achterberg, E.P. "Nutrient Enrichment Can Increase the Susceptibility of Reef Corals to Bleaching." Nature Clim. Change 3, no. 2 (2013): 160-164.

University of Southampton

Related Climate Change Articles:

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.