Nav: Home

3-D-printed bioabsorbable scaffold for ACL reconstruction with bone regeneration

February 27, 2017

New Rochelle, NY, February 27, 2017--Researchers have designed a 3D-printed porous scaffold for use in reconstructing ruptured anterior cruciate ligaments (ACL) in the knee and engineered it to deliver a human bone-promoting protein over an extended period of time to improve bone regeneration. A study describing the composition of the scaffold and comparing different delivery methods for recombinant human bone morphogenetic protein 2 (rhBMP-2) is published in Tissue Engineering, Part A, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available free on the Tissue Engineering website until March 27, 2017.

Joshua Alan Parry, MD, Sanjeev Kakar, MD, and coauthors from Mayo Clinic, Rochester, MN, demonstrated the strength of the scaffold in a rabbit ACL reconstruction model. In the article entitled "Three-Dimension-Printed Porous Poly(Propylene Fumarate) Scaffolds with Delayed rhBMP-2 Release for Anterior Cruciate Ligament Graft Fixation," the researchers compared the use of four approaches, including microspheres, to reduce the initial burst release of rhBMP-2 from the scaffold and extend its release over time.

"This work is a good example of the fusion of technologies -- controlled release drug delivery and 3D printing," says Tissue Engineering Co-Editor-in-Chief Peter C. Johnson, MD, Principal, MedSurgPI, LLC and President and CEO, Scintellix, LLC, Raleigh, NC.
-end-
About the Journal

Tissue Engineering is an authoritative peer-reviewed journal published monthly online and in print in three parts: Part A, the flagship journal published 24 times per year; Part B: Reviews, published bimonthly, and Part C: Methods, published 12 times per year. Led by Co-Editors-In-Chief Antonios G. Mikos, PhD, Louis Calder Professor at Rice University, Houston, TX, and Peter C. Johnson, MD, Principal, MedSurgPI, LLC and President and CEO, Scintellix, LLC, Raleigh, NC, the Journal brings together scientific and medical experts in the fields of biomedical engineering, material science, molecular and cellular biology, and genetic engineering. Tissue Engineering is the official journal of the Tissue Engineering & Regenerative Medicine International Society (TERMIS). Complete tables of content and a sample issue may be viewed online at the Tissue Engineering website.

About the Publisher

Mary Ann Liebert, Inc., publishers is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Stem Cells and Development, Human Gene Therapy, and Advances in Wound Care. Its biotechnology trade magazine, GEN (Genetic Engineering & Biotechnology News), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 80 journals, books, and newsmagazines is available on the Mary Ann Liebert, Inc., publishers website.

Mary Ann Liebert, Inc./Genetic Engineering News

Related Tissue Engineering Articles:

Tissue engineering advance reduces heart failure in model of heart attack
Researchers have grown heart tissue by seeding a mix of human cells onto a 1-micron-resolution scaffold made with a 3-D printer.
HKU Engineering Professor Ron Hui named a Fellow by the UK Royal Academy of Engineering
Professor Ron Hui, Chair Professor of Power Electronics and Philip Wong Wilson Wong Professor of Electrical Engineering at the University of Hong Kong, has been named a Fellow by the Royal Academy of Engineering, UK, one of the most prestigious national academies.
RIT awarded $1.8 million NIH grant to develop ultrathin membranes for tissue engineering
Researchers at Rochester Institute of Technology are advancing tissue engineering through new work in developing improved porous membranes that will be the 'scaffolds,' or foundational structures, for in vitro tissue models.
Iowa State researchers fabricate microfibers for single-cell studies, tissue engineering
Iowa State University researchers are using the science of microfluidics -- the study of fluids moving through channels just a millionth of a meter wide -- to design and fabricate microfiber scaffolds that support cell growth and tissue engineering.
Breakthrough for bone regeneration via double-cell-layered tissue engineering technique
Tokyo Medical and Dental University researchers developed a technique for attaching two distinct layers of cells on top of each other on an amnion-based scaffold.
A novel hybrid polymer simplifies 3-D printing of scaffolds for tissue engineering
A new study describes the development of a novel hybrid polymer suitable for producing 3-D-printed scaffolds on which living cells can be seeded to create engineered tissues.
Engineering adult stem cells to regenerate tissue twice as fast
Kelly Schultz, assistant professor of chemical and biomolecular engineering at Lehigh University, received a three-year NIH grant to study how cells remodel their microenvironment -- a crucial step toward engineering cells to move through synthetic material and tissue more quickly for faster wound healing and tissue regeneration.
Lasers carve the path to tissue engineering
A new technique, developed at EPFL, combines microfluidics and lasers to guide cells in 3-D space, overcoming major limitations to tissue engineering.
Challenges of custom-engineering living tissue to fix a heart
Jianyi 'Jay' Zhang, M.D., Ph.D., works to create new tissue that can replace or protect damaged muscle after a heart attack.
Clay nanotube-biopolymer composite scaffolds for tissue engineering
Scientists of Bionanotechnology Lab, Kazan Federal University, combined three biopolymers, chitosan and agarose (polysaccharides), and a protein gelatine, as the materials to produce tissue engineering scaffolds and demonstrated the enhancement of mechanical strength (doubled pick load), higher water uptake and thermal properties in chitosan-gelatine-agarose hydrogels doped with halloysite.

Related Tissue Engineering Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".