Nav: Home

New technology offers fast peptide synthesis

February 27, 2017

CAMBRIDGE, MA -- Manufacturing small proteins known as peptides is usually very time-consuming, which has slowed development of new peptide drugs for diseases such as cancer, diabetes, and bacterial infections.

To help speed up the manufacturing process, MIT researchers have designed a machine that can rapidly produce large quantities of customized peptides. Their new tabletop machine can form links between amino acids, the buildings blocks of proteins, in about 37 seconds, and it takes less than an hour to generate complete peptide molecules containing up to 60 amino acids.

"You can dial in whatever amino acids you want, and the machine starts printing off these peptides faster than any machine in the world," says Bradley Pentelute, the Pfizer-Laubach Career Development Associate Professor of Chemistry at MIT.

This technology could help researchers rapidly generate new peptide drugs to test on a variety of diseases, and it also raises the possibility of easily producing customized cancer vaccines for individual patients.

Pentelute is the senior author of a paper describing the new system in the Feb. 27 issue of Nature Chemical Biology. The paper's lead authors are graduate students Alexander Mijalis and Dale Thomas; other authors are graduate student Mark Simon, research associate Andrea Adamo, Ryan Beaumont, and Warren K. Lewis Professor of Chemical Engineering Klavs Jensen.

Fast flow

Using traditional peptide manufacturing techniques, which were developed more than 20 years ago, it takes about an hour to perform the chemical reactions needed to add each amino acid to a peptide chain.

Pentelute, Jensen, and their colleagues set out several years ago to devise a faster method based on a newer manufacturing approach known as flow chemistry. Under this strategy, chemicals flow through a series of modules that each perform one step of the overall synthesis.

The team's first version of a flow-based peptide synthesis machine, reported in 2014, sped up the process to about three minutes per peptide bond. In their latest effort, the researchers hoped to make the synthesis even faster by automating more of the process. In the earlier version, the person running the machine had to manually pump amino acids out of their storage bottles, but the new machine automates that step as well.

"Our focus when we were setting out to design the automated machine was to have all the steps controlled by computer, and that would eliminate a lot of the human error and unreliability that's associated with someone doing this process by hand," Mijalis says.

Once a user enters the desired amino acid sequence, the amino acids are pumped, in the correct order, into a module where they are briefly heated to about 90 degrees Celsius to make them more chemically reactive. After being activated, the amino acids flow into a chamber where they are added to the growing peptide chains.

"It's a very iterative process, where you're building up this molecular chain, one piece by one piece," Mijalis says.

As each amino acid is added to the chain, the researchers can measure how much was correctly incorporated by analyzing the waste products that flow into the final chamber of the device. The current machine attaches each amino acid to the chain with about 99 percent efficiency.

Personalized chemistry

Once synthesized, small peptides can be joined together to form larger proteins. So far, the researchers have made proteins produced by HIV, a fragment of an antifreeze protein (which helps organisms survive extreme cold), and a toxin secreted by snails. They are also working on replicating toxins from other animals, which have potential uses as painkillers, blood thinners, or blood clotting agents. They have also made antimicrobial peptides, which scientists are exploring as a possible new class of antibiotic drugs.

Another possible application for the new machine is generating peptides that could be used as personalized cancer vaccines targeting unique proteins found in individual patients' tumors. "That's exactly what our machine makes, and it makes them at scales that are all ready to meet this demand for personalized cancer vaccines," Pentelute says.

The MIT team is also interested in adapting this technology to make other molecules in which building blocks are strung together in long chains, such as polymers and oligonucleotides (strands of RNA or DNA).

"We can start thinking about a personalized chemistry machine," Pentelute says. "It's modular and it's adaptable to all sorts of other chemistries."
-end-


Massachusetts Institute of Technology

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...