Nav: Home

First public data release by the HSC Subaru strategic program

February 27, 2017

Figuring out the fate of the Universe is one step closer. The first massive dataset of a "cosmic census" is released using the largest digital camera on the Subaru Telescope. Beautiful images are available for public at large.

The first dataset from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) was released to the public on February 27th, 2017. HSC-SSP is a large survey being done using HSC, which is an optical imaging camera mounted at the prime focus of the Subaru Telescope. HSC has 104 scientific CCDs (for a total of 870 million pixels) and a 1.77 square-degree field of view.

The National Astronomical Observatory of Japan (NAOJ) has embarked on the HSC-SSP survey in collaboration with the Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU) in Japan, the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA) in Taiwan, and Princeton University in the United States. The project will take 300 nights over 5-6 years. This survey consists of three layers; Wide, Deep, and UltraDeep, using optical and near infrared wavelengths in five broad bands (g, r, i, z, y) and four narrow-band filters.

This release includes data from the first 1.7 years (61.5 nights of observations beginning in 2014). The observed areas covered by the Wide, Deep, and UltraDeep layers are 108, 26, and 4 square degrees, respectively. The limiting magnitudes, which refer to the depth (Note) of the observations, are 26.4, 26.6 and 27.3 mag in r-band (about 620 nm wavelength), respectively, allowing observations of some of the most distant galaxies in the universe. In the multi-band images, images are extremely sharp, with star images only 0.6 to 0.8 arcseconds across. 1 arcsecond equals 3600th part of a degree. These high-quality data will allow a unprecedented view into the nature and evolution of galaxies and dark matter. This first public dataset already contains 70 million galaxies and stars. It demonstrates that HSC-SSP is making the most of the performance of the Subaru Telescope and HSC. In 2015, using HSC observations over 2.3 square degrees of sky, nine clumps of dark matter, each weighing as much a galaxy cluster were discovered from their weak lensing signature (Miyazaki et al. 2015, ApJ 807, 22, "Properties of Weak Lensing Clusters Detected on Hyper Suprime-Cam 2.3 Square Degree Field"). The HSC-SSP data release covers about 50 times more sky than was used in this study, showing the potential of these data to reveal the statistical properties of dark matter.

The total amount of data taken so far comprises 80 terabytes, which is comparable to the size of about 10 million images by a general digital camera. Since it is difficult to search such a huge dataset with standard tools, NAOJ has developed a dedicated database and interface for ease of access and use of the data.

"Since 2014, we have been observing the sky with HSC, which can capture a wide-field image with high resolution," said Dr. Satoshi Miyazaki, the leader of the HSC-SSP. "We believe the data release will lead to many exciting astronomical results, from exploring the nature of dark matter and dark energy, as well as asteroids in our own solar system objects and galaxies in the early universe. SSP team members are now preparing a number of scientific papers based on these data. We plan to publish them in a special issue of the Publications of Astronomical Society of Japan. Moreover, we hope that interested members of the public will also access the data and enjoy the real universe imaged by the Subaru telescope, one of the largest the world."
-end-
Note:

"Depth" of an observation refers to how dim objects can be studied. The light collection power of large aperture mirror (8.2 m for the Subaru Telescope) is the crucial factor, as well as the exposure time. For astronomical objects of the same intrinsic brightness, depth is literally how far one can look.

National Institutes of Natural Sciences

Related Dark Matter Articles:

Does dark matter annihilate quicker in the Milky Way?
Researchers at the Tata Institute of Fundamental Research in Mumbai have proposed a theory that predicts how dark matter may be annihilating much more rapidly in the Milky Way, than in smaller or larger galaxies and the early Universe.
Origin of Milky Way's hypothetical dark matter signal may not be so dark
A mysterious gamma-ray glow at the center of the Milky Way is most likely caused by pulsars.
A new look at the nature of dark matter
A new study suggests that the gravitational waves detected by the LIGO experiment must have come from black holes generated during the collapse of stars, and not in the earliest phases of the Universe.
Dark matter may be smoother than expected
Analysis of a giant new galaxy survey, made with ESO's VLT Survey Telescope in Chile, suggests that dark matter may be less dense and more smoothly distributed throughout space than previously thought.
Supercomputer comes up with a profile of dark matter
In the search for the mysterious dark matter, physicists have used elaborate computer calculations to come up with an outline of the particles of this unknown form of matter.
Mapping the 'dark matter' of human DNA
Researchers from ERIBA, Radboud UMC, XJTU, Saarland University, CWI and UMC Utrecht have made a big step towards a better understanding of the human genome.
Reconciling dwarf galaxies with dark matter
Dwarf galaxies are enigmas wrapped in riddles. Although they are the smallest galaxies, they represent some of the biggest mysteries about our universe.
Did gravitational wave detector find dark matter?
When an astronomical observatory detected two black holes colliding in deep space, scientists celebrated confirmation of Einstein's prediction of gravitational waves.
Dark matter does not contain certain axion-like particles
Researchers at Stockholm University are getting closer to corner light dark-matter particle models.
SDU researchers present a new model for what dark matter might be
There are indications that we might never see the universe's mysterious dark matter.

Related Dark Matter Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...