Nav: Home

Materials that emit rainbows

February 27, 2017

Mechanochromic luminescent (MCL) materials change their color in response to a change in their environment, like pressure and temperature. To date, most MCL materials only change between two colors, limiting their applications. The international research team comprising of chemists at Osaka University and physicists at Durham University has developed tricolor-changing MLC materials. Not only that, the developed materials exhibited efficient thermally activated delayed fluorescence (TADF) and allowed high performance organic light-emitting diodes (OLEDs) devices. The findings can be read about in Chemical Science.

"Most MCL materials generate two colors by switching between a stable state and one metastable state. To realize multi-color MCL, more metastable states are necessary," explain Professors Youhei Takeda and Satoshi Minakata at the Department of Applied Chemistry, Graduate School of Engineering of Osaka University. To create these states, the chemist team led by Takeda and Minakata designed a new molecule by applying a conformationally-switchable phenothiazine (PTZ) as the donor.

"By making the use of a promising and unique acceptor, dibenzophenazine (DBPHZ), which we previously developed, we made a PTZ-DBPHZ-PTZ triad," said Takeda. "In this structure, the PTZ moiety could take two distinct conformers, which therefore in principle creates in total four metastable states as a whole molecule."

In response to heating, fuming, and grinding, the molecule switched its color between yellow, red and orange. The team found that the three colors derive from different conformers in which each PTZ takes either an equatorial or axial conformation relative to the DBPHZ core.

"For red, both of PTZ units take an equatorial-equatorial conformer, for orange, PTZ had an equatorial-axial conformer, and for yellow, PTZ had an axial-axial conformer."

Most OLEDs devices with high energy conversion efficiencies depend on expensive precious metals. TADF light emitting devices, on the other hand, can achieve equal or better efficiency at much lower cost, which is why they have gained popularity for the design of displays in daily electronics like smart phones.

In collaboration with the physicists team at Durham University, the United Kingdom, led by Dr Data and Professor Monkman, they successfully made highly efficient OLED devices by applying the newly developed MCL-TADF molecule as an emissive material. Incorporating the PTZ-DBPHZ-PTZ triad into a light emitting device resulted in an efficiency three times higher than the theoretical maximum of conventional fluorescent materials.

Takeda says that, "Our molecule could become a basis for efficient light-emitting devices and pressure- and temperature-responsive sensors in the future."
-end-


Osaka University

Related Efficiency Articles:

New 5G switch provides 50 times more energy efficiency than currently exists
As 5G hits the market, new US Army-funded research has developed a radio-frequency switch that is more than 50 times more energy efficient than what is used today.
On the trail of organic solar cells' efficiency
Scientists at TU Dresden and Hasselt University in Belgium investigated the physical causes that limit the efficiency of novel solar cells based on organic molecular materials.
Wearable health tech gets efficiency upgrade
North Carolina State University engineers have demonstrated a flexible device that harvests the heat energy from the human body to monitor health.
Photoelectrochemical water-splitting efficiency hits 4.5%
Solar-to-fuel conversion offers a promising technology to solve energy problems, yet device performance could be limited by undesired sunlight absorption.
Green hydrogen: Research to enhance efficiency
Laboratory experiments and a parabolic flight campaign have enabled an international team of researchers from the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) to gain new insights into water electrolysis, in which hydrogen is obtained from water by applying electric energy.
New efficiency world record for organic solar modules
Researchers from Nuremberg and Erlangen has set a new record for the power conversion efficiency of organic photovoltaic modules.
A new method for quantifying crystal semiconductor efficiency
Japanese scientists have found a new way to successfully detect the efficiency of crystal semiconductors.
Improving efficiency, brightness of perovskite LEDs
Advances in organic phosphorescent materials are opening new opportunities for organic light-emitting diodes for combined electronics and light applications, including solar cells, photodiodes, optical fibers and lasers.
'Deforming' solar cells could be clue to improved efficiency
Solar cells and light sensing technologies could be made more efficient by taking advantage of an unusual property due to deformations and defects in their structures.
Pioneering 3D printed device sets new record for efficiency
A new 3-D printed thermoelectric device, which converts heat into electric power with an efficiency factor over 50% higher than the previous best for printed materials -- and is cheap to produce in bulk -- has been manufactured by researchers at Swansea University's SPECIFIC Innovation and Knowledge Centre.
More Efficiency News and Efficiency Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.