Nav: Home

Spontaneous 'dust traps': Astronomers discover a missing link in planet formation

February 27, 2017

Planets are thought to form in the disks of dust and gas found around young stars. But astronomers have struggled to assemble a complete theory of their origin that explains how the initial dust develops into planetary systems. A French-UK-Australian team now think they have the answer, with their simulations showing the formation of 'dust traps' where pebble-sized fragments collect and stick together, to grow into the building blocks of planets. They publish their results in Monthly Notices of the Royal Astronomical Society.

Our Solar system, and other planetary systems, began life with disks of gas and dust grains around a young star. The processes that convert these tiny grains, each a few millionths of a metre (a micron) across, into aggregates a few centimetres in size, and the mechanism for making kilometre-sized 'planetesimals' into planetary cores, are both well understood.

The intermediate stage, taking pebbles and joining them together into objects the size of asteroids, is less clear, but with more than 3,500 planets already found around other stars, the whole process must be ubiquitous.

Dr Jean-Francois Gonzalez, of the Centre de Recherche Astrophysique de Lyon, in France, led the new work. He comments: "Until now we have struggled to explain how pebbles can come together to form planets, and yet we've now discovered huge numbers of planets in orbit around other stars. That set us thinking about how to solve this mystery."

There are two main barriers that need to be overcome for pebbles to become planetesimals. Firstly the drag of gas on dust grains in a disk makes them drift rapidly towards the central star, where they are destroyed, leaving no material to form planets. The second challenge is that growing grains can be broken up in high-speed collisions, breaking them into a large number of smaller pieces and reversing the aggregation process.

The only locations in planet forming disks where these problems can be overcome are so-called 'dust traps'. In these high-pressure regions, the drift motion slows, allowing dust grains to accumulate. With their reduced velocity, the grains can also avoid fragmentation when they collide.

Until now, astronomers thought that dust traps could only exist in very specific environments, but the computer simulations run by the team indicate that they are very common. Their model pays particular attention to the way the dust in a disk drags on the gas component. In most astronomical simulations, gas causes the dust to move, but sometimes, in the dustiest settings, the dust acts more strongly on the gas.

This effect, known as aerodynamic drag back-reaction, is usually negligible, so up to now has been ignored in studies of growing and fragmenting grains. But its effects become important in dust rich environments, like those found where planets are forming.

The effect of the back-reaction is to slow the inward drift of the grains, which gives them time to grow in size. Once large enough, the grains are their own masters, and the gas can no longer govern their motion. The gas, under the influence of this back-reaction, will be pushed outwards and form a high-pressure region: the dust trap. These spontaneous traps then concentrate the grains coming from the outer disk regions, creating a very dense ring of solids, and giving a helping hand to the formation of planets.

Gonzalez concludes: "We were thrilled to discover that, with the right ingredients in place, dust traps can form spontaneously, in a wide range of environments. This is a simple and robust solution to a long standing problem in planet formation."

Observatories like ALMA in Chile already see bright and dark rings in forming planetary systems that are thought to be dust traps. Gonzalez and his team, and other research groups around the world, now plan to extend the trap model all the way to the formation of planetesimals.
-end-
Media contacts

Dr Robert Massey
Royal Astronomical Society
Tel: +44 (0)20 7292 3979
Mob: +44 (0)7802 877699
rm@ras.org.uk

Dr Morgan Hollis
Royal Astronomical Society
Tel: +44 (0)20 7292
mh@ras.org.uk

Science contacts

Dr Jean-Francois Gonzalez
Centre de Recherche Astrophysique de Lyon
Observatoire de Lyon
Tel: +33 4 78 86 85 70
jean-francois.gonzalez@ens-lyon.fr

Images and captions

https://www.ras.org.uk/images/stories/press/Protostars/3D_flat_V15_composite_BIG.png

An image of a protoplanetary disk, made using results from the new model, after the formation of a spontaneous dust trap, visible as a bright dust ring. Gas is depicted in blue and dust in red. Credit: Jean-Francois Gonzalez

https://www.ras.org.uk/images/stories/press/Protostars/Cutaway%20of%20PP%20Disk%20-%20with%20text.jpg

This cartoon illustrates the stages of the formation mechanism for dust traps. The central star is depicted as yellow, surrounded by the protoplanetary disk, here shown in blue. The dust grains make up the band running through the disk.

In the first stage, the dust grains grown in size, and move inwards towards the central star. The now pebble-sized larger grains (in the second panel) then pile up and slow down, and in the third stage the gas is pushed outwards by the back-reaction, creating regions where dust accumulates, the so-called dust traps. The traps then allow the pebbles to aggregate to form planetesimals, and eventually planet-sized worlds. Credit: © Volker Schurbert

https://www.ras.org.uk/images/stories/press/Protostars/Cutaway%20of%20PP%20Disk%20-%20no%20text.jpg

The same cartoon without text

Further information

The new work appears in "Self-induced dust traps: overcoming planet formation barriers", J.-F. Gonzalez, G. Laibe, and S. T. Maddison, Monthly Notices of the Royal Astronomical Society, in press. After the embargo expires the final paper will be available from OUP via http://doi.org/10.1093/mnras/stx016

A preprint of the paper is available from http://www.ras.org.uk/images/stories/press/Protostars/Self-Induced_Dust_Traps.pdf

Notes for editors

The Royal Astronomical Society (RAS), founded in 1820, encourages and promotes the study of astronomy, solar-system science, geophysics and closely related branches of science. The RAS organizes scientific meetings, publishes international research and review journals, recognizes outstanding achievements by the award of medals and prizes, maintains an extensive library, supports education through grants and outreach activities and represents UK astronomy nationally and internationally. Its more than 4,000 members (Fellows), a third based overseas, include scientific researchers in universities, observatories and laboratories as well as historians of astronomy and others.

The RAS accepts papers for its journals based on the principle of peer review, in which fellow experts on the editorial boards accept the paper as worth considering. The Society issues press releases based on a similar principle, but the organisations and scientists concerned have overall responsibility for their content.

T: https://twitter.com/royalastrosoc
F: https://www.facebook.com/RoyalAstroSoc/

Royal Astronomical Society

Related Planets Articles:

How planets may form after dust sticks together
Scientists may have figured out how dust particles can stick together to form planets, according to a Rutgers co-authored study that may also help to improve industrial processes.
Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.
The rare molecule weighing in on the birth of planets
Astronomers using one of the most advanced radio telescopes have discovered a rare molecule in the dust and gas disc around a young star -- and it may provide an answer to one of the conundrums facing astronomers.
How many Earth-like planets are around sun-like stars?
A new study provides the most accurate estimate of the frequency that planets that are similar to Earth in size and in distance from their host star occur around stars similar to our Sun.
Dead planets can 'broadcast' for up to a billion years
Astronomers are planning to hunt for cores of exoplanets around white dwarf stars by 'tuning in' to the radio waves that they emit.
The sun follows the rhythm of the planets
One of the big questions in solar physics is why the sun's activity follows a regular cycle of 11 years.
Five planets revealed after 20 years of observation
To confirm the presence of a planet, it is necessary to wait until it has made one or more revolutions around its star.
Icy giant planets in the laboratory
Giant planets like Neptune may contain much less free hydrogen than previously assumed.
New NASA mission could find more than 1,000 planets
A NASA telescope that will give humans the largest, deepest, clearest picture of the universe since the Hubble Space Telescope could find as many as 1,400 new planets outside Earth's solar system, new research suggests.
Giant planets around young star raise questions about how planets form
Researchers have identified a young star with four Jupiter and Saturn-sized planets in orbit around it, the first time that so many massive planets have been detected in such a young system.
More Planets News and Planets Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.