Nav: Home

Research could lead to better vaccines and new antivirals

February 27, 2017

La Jolla, Calif., Feb. 27, 2016 -- Scientists at Sanford Burnham Prebys Medical Discovery Institute (SBP) have identified a new regulator of the innate immune response--the immediate, natural immune response to foreign invaders. The study, published recently in Nature Microbiology, suggests that therapeutics that modulate the regulator--an immune checkpoint--may represent the next generation of antiviral drugs, vaccine adjuvants, cancer immunotherapies, and treatments for autoimmune disease.

"We discovered that a protein called K-homology splicing regulatory protein (KHSRP) weakens the immune response to viral RNA," says Sumit Chanda, Ph.D., director of the Immunity and Pathogenesis Program at SBP, and senior author of the study. "Depleting KHSRP improved immune signaling and reduced viral replication in cell culture and in vivo, suggesting that drugs inhibiting the protein may have therapeutic value."

The innate immune response is the first line of defense against pathogens--a one-size-fits-all attack on viruses, bacteria, and pretty much anything that looks like an invader. But innate immunity must be carefully regulated. If the response is too slow or too weak, infections can run rampant, and if the trigger is too sensitive or the response is too strong, excessive inflammation or autoimmune diseases can arise.

"That's where KHSRP comes in," explains Chanda. "It physically interacts with a protein called retinoic acid-inducible gene I (RIG-I) to apply the brakes to the innate immune response."

RIG-I receptors initiate antiviral immunity by detecting viral RNA in the cytoplasm of cells. When they bind viral RNA, they turn on signaling that leads to the production of interferon, a strong inflammatory signal that helps kill viruses, as well as the induction of other antiviral responses. RIG-I receptors also coordinate signaling with other immune factors to modulate the adaptive immune response--the acquired, specialized response that develops after the innate response and provides long-term immunity.

"We identified KHSRP by systematically testing every human proteins to identify those that impact RIG-I signaling," says Stephen Soonthornvacharin, a recent Ph.D. graduate from the Chanda lab. "We found about 240 proteins, but we focused on KHSRP because it was the only one of the 240 that was found to inhibit the very early steps of RIG-I signaling."

"Molecules that block KHSRP's actions could serve as adjuvants--components that heighten the immune response--to vaccines against influenza or hepatitis C, as antiviral drugs, or even next-generation cancer immunotherapies," Soonthornvacharin adds. "Also, among the 240 RIG-I regulators we identified, 125 appear to activate RIG-I, so finding drugs that inhibit these proteins may be a way to treat autoimmune conditions involving too much interferon, like type 1 diabetes or lupus. Figuring out which ones are promising requires further investigation."

"We think KHSRP protects against autoimmunity," adds Chanda. "RIG-I normally recognizes RNA molecules that arise during viral infections, but it can also mistakenly sense RNA present in normal cells. Without KHSRP, the innate immune response could be erroneously turned on when there's no virus. Increasing the activity of KHSRP might therefore be a way to treat autoimmunity."

"Next, we plan to figure out more of the details of how KHSRP regulates RIG-I," says Sunnie Yoh, Ph.D., staff scientist in the Chanda lab and a key contributor to the research. "That's the information that will move us in the direction of developing therapies."
-end-
This research was performed in collaboration with scientists at the Novartis Research Foundation, the Icahn School of Medicine at Mount Sinai, Oregon State University Corvallis, the Paul Ehrlich Institute in Langen, Germany, and the University of California San Francisco. Financial support was provided by the National Institutes of Health and the James B. Pendleton Charitable Trust.

About SBP

Sanford Burnham Prebys Medical Discovery Institute (SBP) is an independent nonprofit medical research organization that conducts world-class, collaborative, biological research and translates its discoveries for the benefit of patients. SBP focuses its research on cancer, immunity, neurodegeneration, metabolic disorders and rare children's diseases. The Institute invests in talent, technology and partnerships to accelerate the translation of laboratory discoveries that will have the greatest impact on patients. Recognized for its world-class NCI-designated Cancer Center and the Conrad Prebys Center for Chemical Genomics, SBP employs about 1,100 scientists and staff in San Diego (La Jolla), Calif., and Orlando (Lake Nona), Fla. For more information, visit us at SBPdiscovery.org or on Facebook at facebook.com/SBPdiscovery and on Twitter @SBPdiscovery.

Sanford-Burnham Prebys Medical Discovery Institute

Related Immune Response Articles:

How to boost immune response to vaccines in older people
Identifying interventions that improve vaccine efficacy in older persons is vital to deliver healthy ageing for an ageing population.
Unveiling how lymph nodes regulate immune response
The Hippo pathway keeps lymph nodes' development healthy. If impaired, lymph nodes become full of fat cells or fibrosis develops.
Early immune response may improve cancer immunotherapies
Researchers report a new mechanism for detecting foreign material during early immune responses.
Researchers decode the immune response to Ebola vaccine
The vaccine rVSV-EBOV is currently used in the fight against Ebola virus.
Immune response depends on mathematics of narrow escapes
The way immune cells pick friends from foes can be described by a classic maths puzzle known as the 'narrow escape problem'.
Signature of an ineffective immune response to cancer revealed
Our immune system is programmed to destroy cancer cells. Sometimes it has trouble slowing disease progression because it doesn't act quickly or strongly enough.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Having stressed out ancestors improves immune response to stress
Having ancestors who were frequently exposed to stressors can improve one's own immune response to stressors, according to Penn State researchers.
Researchers discovered new immune response regulators
The research groups of Academy Professor Riitta Lahesmaa and Research Director Laura Elo from Turku Centre for Biotechnology have discovered new proteins that regulate T cells in the human immune system.
Blueprint for plant immune response found
Washington State University researchers have discovered the way plants respond to disease-causing organisms, and how they protect themselves, leading the way to potential breakthroughs in breeding resistance to diseases or pests.
More Immune Response News and Immune Response Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.