Nav: Home

Faulty genomic pathway linked to schizophrenia developing in utero, study finds

February 27, 2017

BUFFALO, N.Y. -- The skin cells of four adults with schizophrenia have provided an unprecedented "window" into how the disease began while they were still in the womb, according to a recent paper in Schizophrenia Research.

The paper was published online in January by researchers at the Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo in collaboration with the Icahn School of Medicine at Mount Sinai. It provides what the authors call the first proof of concept for their hypothesis that a common genomic pathway lies at the root of schizophrenia.

The researchers say the work is a first step toward the design of treatments that could be administered to pregnant mothers at high risk for bearing a child with schizophrenia, potentially preventing the disease before it begins.

Multiple mutations


"In the last 10 years, genetic investigations into schizophrenia have been plagued by an ever-increasing number of mutations found in patients with the disease," said Michal K. Stachowiak, PhD, senior author on the paper, and professor in the Department of Pathology and Anatomical Sciences in the Jacobs School of Medicine and Biomedical Sciences at UB.

PHOTO available here.

"We show for the first time that there is, indeed, a common, dysregulated gene pathway at work here," he said.

The authors gained insight into the early brain pathology of schizophrenia by using skin cells from four adults with schizophrenia and four adults without the disease that were reprogrammed back into induced pluripotent stem cells and then into neuronal progenitor cells.

"By studying induced pluripotent stem cells developed from different patients, we recreated the process that takes place during early brain development in utero, thus obtaining an unprecedented view of how this disease develops," said Stachowiak. "This work gives us an unprecedented insight into those processes."

A central intersection point


The research provides what he calls proof of concept for the hypothesis he and his colleagues published in 2013. They proposed that a single genomic pathway, called the Integrative Nuclear FGFR 1 Signaling (INFS), is a central intersection point for multiple pathways involving more than 100 genes believed to be involved in schizophrenia.

"This research shows that there is a common dysregulated gene program that may be impacting more than 1,000 genes and that the great majority of those genes are targeted by the dysregulated nuclear FGFR1," Stachowiak said.

When even one of the many schizophrenia-linked genes undergoes mutation, by affecting the INFS it throws off the development of the brain as a whole, similar to the way that an entire orchestra can be affected by a musician playing just one wrong note, he said.

The next step in the research is to use these induced pluripotent stem cells to further study how the genome becomes dysregulated, allowing the disease to develop.

"We will utilize this strategy to grow cerebral organoids - mini-brains in a sense - to determine how this genomic dysregulation affects early brain development and to test potential preventive or corrective treatments," he said.
-end-
UB co-authors with Stachowiak are P. Sarder and E. K. Stachowiak, both assistant professors in the Department of Pathology and Anatomical Sciences, as well as S. Narla, Y-W Lee and C.A. Benson, all graduate students in the department. K.J. Brennand of the Icahn School of Medicine at Mt. Sinai also is a co-author.

The work is funded by NYSTEM, the Patrick P. Lee Foundation, the National Science Foundation and the National Institutes of Health.

Founded in 1846, the Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo is beginning a new chapter in its history with the largest medical education building under construction in the nation. The eight-story, 628,000-square-foot facility is scheduled to open in 2017. The new location puts superior medical education, clinical care and pioneering research in close proximity, anchoring Buffalo's evolving comprehensive academic health center in a vibrant downtown setting. These new facilities will better enable the school to advance health and wellness across the life span for the people of New York and the world through research, clinical care and the education of tomorrow's leaders in health care and biomedical sciences. The school's faculty and residents provide care for the community's diverse populations through strong clinical partnerships and the school's practice plan, UBMD Physicians' Group.

University at Buffalo

Related Schizophrenia Articles:

First physiological test for schizophrenia and depression
Researchers have found a new way of using proteins in nerve cells to identify people with depression and schizophrenia.
The emergence of a new dopamine hypothesis of schizophrenia
Biological Psychiatry presents a special issue, 'The Dopamine Hypothesis of Schizophrenia,' dedicated to recent advances in understanding the role of dopamine signaling in schizophrenia.
Progress in refining the genetic causes of schizophrenia
An international study led by the University of Exeter Medical School has made advances in understanding the ways in which genetic risk factors alter gene function in schizophrenia.
Exercise can tackle symptoms of schizophrenia
Aerobic exercise can significantly help people coping with the long-term mental health condition schizophrenia, according to a new study from University of Manchester researchers.
In search of neurobiological factors for schizophrenia
It is impossible to predict the onset of schizophrenic psychosis.
A comparison between quetiapine and aripiprazole for treatment of schizophrenia
Schizophrenia is a common cause of incapacity and is ranked as the third most disabling illness subsequent to dementia and quadriplegia.
Four new genetic diseases defined within schizophrenia
Changes in key genes define four previously unknown conditions within schizophrenia, according to a study led by researchers from NYU Langone Medical Center published online April 28 in EBioMedicine, a Lancet journal.
Decrypting a collagen's role in schizophrenia
A small peptide generated from a collagen protein may protect the brain from schizophrenia by promoting the formation of neuronal synapses, according to a paper published in The Journal of Cell Biology.
Two in 5 individuals with schizophrenia have attempted suicide
A new study by the University of Toronto (U of T), released today, found that those with schizophrenia who'd been physically abused during childhood were five times more likely to have attempted suicide.
'Schizophrenia' does not exist, argues expert
The term 'schizophrenia,' with its connotation of hopeless chronic brain disease, should be dropped and replaced with something like 'psychosis spectrum syndrome,' argues a professor of psychiatry in The BMJ today.

Related Schizophrenia Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.