Nav: Home

Recovering predators and prey

February 27, 2017

If you build it, they will come. That's historically been a common approach to species recovery: Grow the prey population first and predators will quickly return. As it turns out, that's not quite the case. A new study has found that restoring predator and prey species simultaneously speeds the recovery efforts of both.

Published in the journal Nature Ecology and Evolution, the paper by a team of scientists that includes UC Santa Barbara researchers used models and case studies to examine the pace of species and ecosystem recovery efforts. They found that tandem recovery of predators and prey is almost always more efficient -- and on average about twice as fast -- as sequential recovery.

"Previous work has shown how high demand for resources has led to the overexploitation of species throughout the food chain in a number of ecosystems," said co-author Adrian Stier, an assistant professor in UCSB's Department of Ecology, Evolution and Marine Biology. "We show how synchronized restoration of these species is nearly always the more rapid and direct path to ecological recovery. Restoration takes longer when predators recover first, but when prey recover first the system is more prone to volatile population fluctuations."

Co-author Benjamin Halpern, director of UCSB's National Center for Ecological Analysis and Synthesis and a professor in the campus's Bren School of Environmental Science & Management, noted that the study's conclusion is important because it offers an improvement on traditional strategies. Historically, about half of species restoration efforts employ a sequential, one-species-at-time tactic, most often beginning with targeted restoration of prey species first.

"Our results suggest that we need to fundamentally rethink the way we approach species restoration and recovery efforts," said Halpern. "If you stop to think about it, our results make sense. Natural systems are a community of species that all interact; you need all parts present and abundant to function well -- and synchronized recovery of species is the best way to do that effectively."

Just as critical, synchronous restoration is also better for the humans who earn a living harvesting both predator and prey, say, for example, Pacific cod and Pacific herring.

"You might think the loss of income associated with reducing harvest on both species at the same time would be greater than reducing harvest on one species after another, but our work suggests that synchronous recovery is ultimately better for recovering the ecosystem -- and better from an economic perspective as well," said co-author Mark Novak of the Oregon State University College of Science.

Because of overharvest, declines of multiple animal populations are typical of many ecosystems. For example, population collapses seen in pairs of species -- lions and wildebeest, Steller sea lions and Pacific herring, and mink and muskrat -- are wholly or partially attributable to trophy hunting, industrial fisheries or the fur trade.

In both terrestrial and marine resources management, population restoration and the setting of harvest quotas have long been single-species endeavors. Even in the pursuit of more holistic ecosystem-based rebuilding of food webs -- the interconnected chains of who eats whom -- the dominant strategy has been to allow prey species to initially rebound to where they readily sustain top predator levels.

However, this new research found that such single-species strategies are less efficient than allowing predator and prey to recover simultaneously. For example, predator-first strategies are particularly slow because they lead to increases in predator numbers while prey species remain depleted, limiting the availability of food that would encourage faster predator population growth.

The scientists' analyses included information from real-world examples, such as the recovery of aforementioned Pacific cod along the west coast of Vancouver Island, which proceeded slowly before the recovery of cod's preferred prey: the Pacific herring.

A database of marine fisheries shows that past recovery efforts have been nearly evenly divided between sequential recoveries -- those that prioritize predator or prey species -- and the type of synchronous recoveries that this new research determined to be faster and more efficient.

"This suggests that there is room for improvement in many restoration efforts by coordinating the recovery of predator and prey species," Stier said. "Our research emphasizes how existing marine policy, including marine protected areas and mixed stock management, offers opportunities to synchronize the restoration of multiple species."

"The order and timing of how you approach recovery does matter," said lead author Jameal Samhouri, a research fish biologist at National Oceanic and Atmospheric Administration's Northwest Fisheries Science Center in Seattle. The scientists concluded that improving the efficiency of ecosystem recovery efforts by better coordinating the restoration of individual species has the potential to "play a critical role in shaping 21st-century solutions to environmental issues."
-end-


University of California - Santa Barbara

Related Predators Articles:

Marine predators: Bigger in size with an appetite to match
The size of marine invertebrate predators has increased over the past 500 million years, while the size of their prey has not, a new study reveals.
Predators are real lowlifes
By deploying green clay caterpillar models across six continents, researchers unmasked an important global pattern.
Fish step up to lead when predators are near
Researchers from the University of Bristol have discovered that some fish within a shoal take on the responsibilities of leader when they are under threat from predators.
Restoring predators and prey together speeds recovery
Restoring predator and prey species together helps accelerate ecosystem recovery efforts compared to pursuing restoration of one species at a time, new research concludes.
Recovering predators and prey
Researchers show how simultaneously restoring predators and prey is much faster and more effective than doing so one at a time.
Reducing pressure on predators, prey simultaneously is best for species' recovery
Reducing human pressure on exploited predators and prey at the same time is the best way to help their populations recover, a new study indicates.
When it comes to predators, size matters
When it comes to predators, scientists find larger sheephead that consume bigger urchins help keep that population under control.
Birds of a feather flock together to confuse potential predators
Scientists from the universities of Bristol and Groningen, in The Netherlands, have created a computer game style experiment which sheds new light on the reasons why starlings flock in massive swirling groups over wintering grounds.
For viral predators of bacteria, sensitivity can be contagious
Scientists have shown for the first time how bacteria with resistance to a viral predator can become susceptible to it after spending time in the company of other susceptible or 'sensitive' bacteria.
How miniature predators get their favorite soil bacteria
Tiny predators in the soil can literally sniff out their prey: soil bacteria, which communicate with each other using scent.

Related Predators Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#518 With Genetic Knowledge Comes the Need for Counselling
This week we delve into genetic testing - for yourself and your future children. We speak with Jane Tiller, lawyer and genetic counsellor, about genetic tests that are available to the public, and what to do with the results of these tests. And we talk with Noam Shomron, associate professor at the Sackler School of Medicine at Tel Aviv University, about technological advancements his lab has made in the genetic testing of fetuses.