Nav: Home

Investigating star formation is UMass Amherst researcher's mission

February 27, 2017

AMHERST, Mass. - University of Massachusetts Amherst astrophysicist Stella Offner, who has received a five-year, $429,000 faculty early career development (CAREER) grant from National Science Foundation (NSF), plans to use it not only to study how stars are born, but also to develop interactive online astronomy "tours" to enhance K-12 science education in local schools.

The CAREER grant is NSF's most prestigious award to junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education and integrating education and research with their institution's mission.

Offner says she hopes to develop a better understanding of two fundamental questions in star formation, that is, how stars obtain their masses and how stars interact with their birth environments. Her team will perform computer simulations of forming star clusters and test different theories for the origin of star masses.

She says, "This is an important astrophysics problem because a star's mass determines how long it will live, whether it could host planets and how it will eventually die."

Offner will use the simulations to produce models to compare directly to telescope observations of star-forming regions in the Milky Way galaxy. "From small stars all the way to huge ones that are a hundred times the mass of our sun, the same physics is at work, but we do not know how it produces such a broad range of different masses," she notes.

"Many astronomers are trying to measure the distribution of stars in distant, old galaxies by looking at their total light, but we can't interpret that until we understand the distribution in the local universe," she adds. Within galaxies, stars are born in cold clouds of gas tens to hundreds of light years across, which collapse to form groups of stars that can have planets.

Factors such as gas density, metal content, outflow feedback and radiation from young stars are believed to play a role in star formation. Offner will perform computer simulations to figure out how a few basic rules of physics interact with these and other variables to form stars of such different sizes and qualities. She works closely with astronomers who observe star-forming regions to design such simulations.

Using new data from this work, Offner plans to have her undergraduate astronomy students create tours about stars and planets using the public software World Wide Telescope (WWT), which makes actual astronomy data available to any user around the globe. "Astronomers rely on public support for our research," she says. "so we feel a strong obligation to share our exciting new discoveries with the public."

The WWT program is easy to use and allows astronomy data to be explored by everyone, the astrophysicist says. In addition to planet and star tours, she will create interactive online astronomy labs for girls in the Eureka! program held on the UMass Amherst campus each summer. "I hope to find local teachers who are interested in using these labs in their classrooms as well," Offner says.
-end-


University of Massachusetts at Amherst

Related Star Formation Articles:

Star formation project maps nearby interstellar clouds
Astronomers have captured new, detailed maps of three nearby interstellar gas clouds containing regions of ongoing high-mass star formation.
Scientists discover pulsating remains of a star in an eclipsing double star system
Scientists from the University of Sheffield have discovered a pulsating ancient star in a double star system, which will allow them to access important information on the history of how stars like our Sun evolve and eventually die.
Distant milky way-like galaxies reveal star formation history of the universe
Thousands of galaxies are visible in this radio image of an area in the Southern Sky, made with the MeerKAT telescope.
Cascades of gas around young star indicate early stages of planet formation
What does a gestating baby planet look like? New research in Nature by a team including Carnegie's Jaehan Bae investigated the effects of three planets in the process of forming around a young star, revealing the source of their atmospheres.
Massive exoplanet orbiting tiny star challenges planet formation theory
Astronomers have discovered a giant Jupiter-like exoplanet in an unlikely location -- orbiting a small red dwarf star.
ALMA pinpoints the formation site of planet around nearest young star
Researchers using ALMA (Atacama Large Millimeter/submillimeter Array) found a small dust concentration in the disk around TW Hydrae, the nearest young star.
Star formation burst in the Milky Way 2-3 million years ago
A team led by researchers of the Institute of Cosmos Sciences of the University of Barcelona and the Besançon Astronomical Observatory have found, analysing data from the Gaia satellite, that a severe star formation burst occurred in the Milky Way about to and three thousand million years ago.
The rise and fall of Ziggy star formation and the rich dust from ancient stars
Researchers have detected a radio signal from abundant interstellar dust in MACS0416_Y1, a galaxy 13.2 billion light-years away in the constellation Eridanus.
Lifting the veil on star formation in the Orion Nebula
Writing in 'Nature', an international research team including astronomers from Cologne describe their discovery that stellar wind from a newborn star in the Orion Nebula is preventing more stars from forming nearby.
Massive star's unusual death heralds the birth of compact neutron star binary
Carnegie's Anthony Piro was part of a Caltech-led team of astronomers who observed the peculiar death of a massive star that exploded in a surprisingly faint and rapidly fading supernova, possibly creating a compact neutron star binary system.
More Star Formation News and Star Formation Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.