Nav: Home

What's really in the water

February 27, 2017

PITTSBURGH (February 27, 2017) ... U.S. beaches and waterways are often closed to human contact when tests indicate an increase in E. coli, usually after heavy rains overwhelm sewage systems. However, the concentration of these common bacteria is not a reliable indicator of viruses in the water, which present a greater danger of causing illness in humans. Through a five-year, $500,000 CAREEER Award from the National Science Foundation, researchers at the University of Pittsburgh's Swanson School of Engineering will be developing new DNA sequencing methods to directly measure viral loads in water and better indicate potential threats to human health.

"Quantitative Viral Metagenomics for Water Quality Assessment," funded through the NSF's Division of Chemical, Bioengineering, Environmental, and Transport Systems, is being led by Kyle J. Bibby, assistant professor of civil and environmental engineering at the Swanson School. The CAREER program is the NSF's most prestigious award for junior faculty who exemplify outstanding research, teaching, and their integration.

Dr. Bibby's expertise in genomics tools to study, understand, and solve environmental challenges influenced this latest research, which will capitalize on new genetic sequencing tools used in medicine.

"Viruses can persist in water longer than E.coli, and are an important component of disease caused by contaminated water," Dr. Bibby said. "Although viruses don't often appear in greater concentrations than bacteria, they still present a danger especially when waterways are contaminated by human waste."

According to Dr. Bibby, conventional methods used to detect viral pathogens in the environment are limited because of viral diversity. However, advances in medicine, specifically in DNA sequencing, have increased the ability to detect even the slightest viral load. Dr. Bibby's group, which previously studied the persistence of the Ebola virus in the environment and has worked to develop novel indicators of viral contamination, will utilize quantitative viral metagenomics for viral water quality assessment.

"There's actually very little known about viral pathogen diversity and dynamics in wastewater-impacted systems because in the past, viruses were difficult to detect. New DNA sequencing methods and methods to concentrate the virus and analyze the data rapidly and accurately are necessary for this method applicable and economical. In addition, we need to demonstrate the efficiency and accuracy across several sources in the U.S.," Dr. Bibby said.

The CAREER Award includes an outreach component that allows Dr. Bibby to engage with students at the Pittsburgh Public School's Science & Technology Academy (SciTech) next to the Swanson School, leading to development of a hands-on educational module for high school students to characterize microbial water quality. Dr. Bibby will also utilize the research to expand the H2Oh! interactive exhibit he developed with the Carnegie Science Center, enabling children to better understand the impact of water quality on everyday life.

"Applying quantitative viral metagenomics to these DNA/RNA sequencing techniques has the potential to advance water quality monitoring not only in developing countries, but also in U.S. municipal systems that currently rely on fecal indicator bacteria such as E. coli to determine water quality," Dr. Bibby said. "In the future, viral pathogen detection would be greatly beneficial in many other settings, such as sudden viral outbreaks, food production safety, and viral epidemiology."
-end-
@PittEngineering; @kylejbibby

University of Pittsburgh

Related Bacteria Articles:

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.