Nav: Home

How to reduce the environmental impact of a loaf of bread?

February 27, 2017

  • Ammonium nitrate fertilizer used in wheat cultivation contributes 43 per cent of greenhouse gas emissions
  • 100 million tonnes of fertiliser used globally every year
  • Findings vital to providing solutions to global food security challenge
With an estimated 12 million loaves sold in the UK every year, bread remains a staple of the British diet. In a groundbreaking study researchers from the University of Sheffield have now calculated the environmental impact of a loaf of bread and which part of its production contributes the most greenhouse gas.

The group of interdisciplinary researchers from the University's Grantham Centre for Sustainable Futures, analysed the complete process from growing and harvesting the wheat; milling the grain; producing the flour; baking the bread and the production of the final product, ready to be sold by retailers.

The findings, published today (27 February 2017) in the journal Nature Plants, show ammonium nitrate fertiliser used in wheat cultivation contributes almost half (43 per cent) of the greenhouse gas emissions - dwarfing all other processes in the supply chain.

Dr Liam Goucher, N8 Agrifood Research Fellow from the University of Sheffield who carried out the study, said: "Consumers are usually unaware of the environmental impacts embodied in the products they purchase - particularly in the case of food, where the main concerns are usually over health or animal welfare.

"There is perhaps awareness of pollution caused by plastic packaging, but many people will be surprised at the wider environmental impacts revealed in this study.

"We found in every loaf there is embodied global warming resulting from the fertiliser applied to farmers' fields to increase their wheat harvest. This arises from the large amount of energy needed to make the fertilizer and from nitrous oxide gas released when it is degraded in the soil."

How to produce sufficient healthy and affordable food for the world's growing and more demanding population, whilst protecting the environment is one of the biggest challenges of the 21st century.

It is estimated that up to 60 per cent of agricultural crops are now grown with the use of fertilisers. Although they can dramatically boast the growth of plants and vegetables - assisting the growing demand of food yields - fertilisers consist of substances and chemicals such as methane, carbon dioxide, ammonia and nitrogen. The emissions from these substances in synthetic fertilisers contribute to greenhouse gases.

Professor Peter Horton FRS, Chief Research Advisor to the Grantham Centre for Sustainable Futures at the University of Sheffield and corresponding author of the paper, said: "Our findings bring into focus a key part of the food security challenge - resolving the major conflicts embedded in the agri-food system, whose primary purpose is to make money not to provide sustainable global food security.

"High agricultural productivity - necessary for profit for farmers, agri-businesses and food retailers, whilst also keeping prices low for consumers - currently requires high levels of application of relatively cheap fertilisers."

He added: "With over 100 million tonnes of fertiliser used globally each year to support agricultural production this is a massive problem, but environmental impact is not costed within the system and so there are currently no real incentives to reduce our reliance on fertiliser.

"How to achieve sustainable global food security is not only a technical question but a political economic one, and requires interdisciplinary research of the kind we do here at Sheffield."

The study was made possible by a pioneering collaboration with the agricultural and food manufacturing sector developed by Richard Bruce, a co-author of the paper and Business Engagement Lead for the Grantham Centre for Sustainable Futures at the University of Sheffield.

The data analysed in the study was processed using an advanced life-cycle assessment tool - SCEnAT - developed by Professor Lenny Koh, Director of the Advanced Resource Efficiency Centre at the University's Management School and co-author of the paper.

"This tool handles large and complex data sets and yielding data on the environmental impact, including greenhouse gas emissions of all the stages in the supply chain," said Professor Koh.

"The tool identifies the processes that yield the most impact - the hotspots.

"The findings raise a very important issue - whose responsibility is it to bring about the implementation of these interventions: the fertiliser manufacturer, the farmer, the retailer or the consumer?

"There is a growing recognition for a range of industrial processes of the notion of extended producer responsibility - the producer being responsible for downstream impact, expanded to the idea of shared producer and consumer responsibility. The consumer is key, whether being persuaded to pay more for a greener product or by applying pressure for a change in practice."

The paper also highlights the solutions available which could potentially reduce these impacts in the future.

Co-author Professor Duncan Cameron, Co-director of the P3 Centre for Translational Plant and Soil Science explains: "The fertiliser problem is solvable - through improved agronomic practices".

"These harness the best of organic farming combined with new technologies to better monitor the nutritional status of soils and plants and to recycle waste and with the promise of new wheat varieties able to utilise soil nitrogen more efficiently".
-end-
Notes to editors

The Grantham Centre for Sustainable Futures


The Grantham Centre at the University of Sheffield is an ambitious and innovative collaboration between the University of Sheffield and the Grantham Foundation for the Protection of the Environment.

For more information please visit http://grantham.sheffield.ac.uk/

Plant Production and Protection (P3)


P3 is a centre of excellence for translational plant and soil science using the breadth of plant and soil science expertise within the University of Sheffield to find suitable solutions to agricultural problems.

To find out more please visit http://p3.sheffield.ac.uk/

The Advanced Resource Efficiency Centre


The Advanced Resource Efficiency Centre (AREC) at the University of Sheffield is a facility to promote the collaboration between industry and academia. It provides a platform for access to policy makers, in order to meet the challenge of promoting resource efficiency and sustainability across supply chains.

The concept of AREC as a facility is to enable the creation of competitive advantage through developing resource sustainable supply chains, built on a strong foundation of government policy initiatives.

AREC supports the development of resource sustainable supply chains by proposing new ways of reducing risk for partners in overcoming the challenges of resource availability. Through AREC, Small & Medium sized Enterprises (SMEs) can join in collaboration with larger industrial partners and benefit from cutting edge academic research and skills.

For more information please visit: http://www.sheffield.ac.uk/arec

The University of Sheffield


With almost 27,000 of the brightest students from over 140 countries, learning alongside over 1,200 of the best academics from across the globe, the University of Sheffield is one of the world's leading universities.

A member of the UK's prestigious Russell Group of leading research-led institutions, Sheffield offers world-class teaching and research excellence across a wide range of disciplines.

Unified by the power of discovery and understanding, staff and students at the university are committed to finding new ways to transform the world we live in.

Sheffield is the only university to feature in The Sunday Times 100 Best Not-For-Profit Organisations to Work For 2017 and was voted number one university in the UK for Student Satisfaction by Times Higher Education in 2014. In the last decade it has won four Queen's Anniversary Prizes in recognition of the outstanding contribution to the United Kingdom's intellectual, economic, cultural and social life.

Sheffield has six Nobel Prize winners among former staff and students and its alumni go on to hold positions of great responsibility and influence all over the world, making significant contributions in their chosen fields.

Global research partners and clients include Boeing, Rolls-Royce, Unilever, AstraZeneca, Glaxo SmithKline, Siemens and Airbus, as well as many UK and overseas government agencies and charitable foundations.

For further information, please visit: http://www.sheffield.ac.uk

University of Sheffield

Related Greenhouse Gas Articles:

Old carbon reservoirs unlikely to cause massive greenhouse gas release
As global temperatures rise, permafrost and methane hydrates -- large reservoirs of ancient carbon -- have the potential to break down, releasing enormous quantities of the potent greenhouse gas methane.
Mediterranean rainfall immediately affected by greenhouse gas changes
Mediterranean-type climates face immediate drops in rainfall when greenhouse gases rise, but this could be interrupted quickly if emissions are cut.
Seeking better guidelines for inventorying greenhouse gas emissions
Governments around the world are striving to hit reduction targets using Intergovernmental Panel on Climate Change (IPCC) guidelines to limit global warming.
Nitrous oxide, a greenhouse gas, is on the rise
A new study from an international group of scientists finds we are releasing more of the greenhouse gas nitrous oxide into the atmosphere than previously thought.
Atmospheric pressure impacts greenhouse gas emissions from leaky oil and gas wells
Fluctuations in atmospheric pressure can heavily influence how much natural gas leaks from wells below the ground surface at oil and gas sites, according to new University of British Columbia research.
Natural-gas leaks are important source of greenhouse gas emissions in Los Angeles
Liyin He, a Caltech graduate student, finds that methane in L.A.'s air correlates with the seasonal use of gas for heating homes and businesses
From greenhouse gas to fuel
University of Delaware scientists are part of an international team of researchers that has revealed a new approach to convert carbon dioxide gas into valuable chemicals and fuels.
UBC researchers explore an often ignored source of greenhouse gas
In a new study from UBC's Okanagan campus, researchers have discovered a surprising new source of carbon dioxide (CO2) emissions -- bicarbonates hidden in the lake water used to irrigate local orchards.
Corncob ethanol may help cut China's greenhouse gas emissions
A new Biofuels, Bioproducts and Biorefining study has found that using ethanol from corncobs for energy production may help reduce greenhouse gas emissions in China, if used instead of starch-based ethanol.
Bacteria eats greenhouse gas with a side of protein
With the ability to leech heavy metals from the environment and digest a potent greenhouse gas, methanotrophic bacteria pull double duty when it comes to cleaning up the environment.
More Greenhouse Gas News and Greenhouse Gas Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Nina
Producer Tracie Hunte stumbled into a duet between Nina Simone and the sounds of protest outside her apartment. Then she discovered a performance by Nina on April 7, 1968 - three days after the assassination of Dr. Martin Luther King Jr. Tracie talks about what Nina's music, born during another time when our country was facing questions that seemed to have no answer, meant then and why it still resonates today.  Listen to Nina's brother, Samuel Waymon, talk about that April 7th concert here.