Nav: Home

Effects of genes often influenced by network

February 27, 2017

When many genes regulate a single trait, they commonly work together in large clusters or 'networks'. Taking this into account allows better predictions of how an individual's genetic make-up affects the trait concerned. The risk of perceiving the importance of an individual gene incorrectly is also reduced. This has been shown by researchers at Uppsala University, through a detailed analysis of thousands of related yeast cells.

Today, an individual's entire genome can be mapped in a matter of days. The big bottleneck in genetic studies is therefore no longer the problem of finding DNA differences among individuals. Instead, the great challenge is to identify which of the millions of differences affect how single cells or whole organisms function, and to understand how this happens. Researchers usually study one gene variant at a time, on the assumption that the effects of different genes are mutually independent. In so doing, they hope to identify the single most important gene variants and obtain a sound grasp of how useful they are for such purposes as predicting which individuals run the highest risk of falling ill or suffering side-effects from a drug.

'Today, companies are already offering DNA-based services for genealogy, to find relatives, for example. But the hope is that in the future we'll also be able to predict individuals' traits based on their genes. For example, one could then customise treatments and give individualised advice on health and lifestyle issues,' says PhD student Simon Forsberg who, jointly with senior lecturer Örjan Carlborg, headed the study.

The researchers conducted a detailed analysis of DNA and traits from thousands of genetically different yeast cells. The results showed that it was common for genes to work together. Once it was known how the genes do so, the information could be used both to gain a better understanding of the importance of various genes in regulating the trait and to predict individual yeast cell's traits from their genetic composition.

'No doubt, in fact, few geneticists have believed that a gene variant has exactly the same effect on all individuals. But only now has it become possible to collect data from large enough experiments that enable us to investigate how important it is,' Carlborg says.

The researchers found that many of the genes proved to be working together in large networks. It was particularly striking that some of them served as 'master regulator switches' for many other genes. When they were 'switched off', the other gene variants in the network had no effect on the traits studied.

'It was remarkable that the effects of these genes were entirely dependent on the other genes in the networks. Along with certain variants, they seemed to have a tremendous effect, while they hardly had any effect at all in combination with others,' says Simon Forsberg.

The study shows that, in many cases, it is difficult to predict the outcome for an individual by summarising the effects of individual genes.

'We hope that what we've arrived at here will help others to analyse and interpret results from genetic studies in humans, plants and animals too, in a better way. It's important for us to become aware of what risks there may be if we don't consider the way genes work together. This applies, for example, when the aim is to use DNA information to predict how high a risk there is of an individual falling ill or suffering severe side-effects from a drug treatment,' Carlborg concludes.

Uppsala University

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...