Nav: Home

Simple urine test could measure how much our body has aged

February 27, 2018

Researchers find that a substance indicating oxidative damage increases in urine as people get older. The study, published today in open-access journal in Frontiers in Aging Neuroscience, also describes a way to easily measure levels of this marker in human urine samples. The new marker potentially provides a method to measure how much our body has aged -- our biological rather than chronological age. This could help predict our risk of developing age-related disease, and even our risk of death.

While everyone born in the same year has the same chronological age, the bodies of different people age at different rates. This means that, although the risk of many diseases increases with age, the link between our age in years and our health and lifespan is relatively loose. Many people enjoy long lives, relatively free of disease, while others suffer chronic illness and premature death.

So, if our age in years isn't the most reliable indicator of aging in our bodies, what is?

Some researchers consider normal aging to be a disease, where our cells accumulate damage over time. The rate of this cellular damage can vary from person to person, and may be dictated by genetics, lifestyle and the environment we live in. This cellular damage may be a more accurate indication of our biological age than the number of years since we were born.

Finding a way to measure biological age could help to predict the risk of developing age-related disease and even death. We also need to be able to measure biological age to know whether treatments to slow aging - which may be possible in the future -- are effective.

One mechanism thought to underlie biological aging involves a molecule vital to our survival - oxygen - in what is called the free radical theory of aging.

"Oxygen by-products produced during normal metabolism can cause oxidative damage to biomolecules in cells, such as DNA and RNA," explains Jian-Ping Cai, a researcher involved in the study. "As we age, we suffer increasing oxidative damage, and so the levels of oxidative markers increase in our body."

One such marker, with the catchy name of 8-oxo-7,8-dihydroguanosine -- or 8-oxoGsn for short -- results from oxidation of a crucial molecule in our cells called RNA. In previous studies in animals, Cai and colleagues found that 8-oxoGsn levels increase in urine with age.

To see if this is true for humans as well, the researchers measured 8-oxoGsn in urine samples from 1,228 Chinese residents aged 2-90 years old, using a rapid analysis technique called ultra-high-performance liquid chromatography.

"We found an age-dependent increase in urinary 8-oxoGsn in participants 21 years old and older." said Cai. "Therefore, urinary 8-oxoGsn is promising as a new marker of aging."

Interestingly, levels of 8-oxoGsn were roughly the same between men and women, except in post-menopausal women, who showed higher levels. This may have been caused by the decrease in estrogen levels that happens during menopause, as estrogen is known to have anti-oxidant effects.

The team's rapid analysis technique could be useful for large-scale aging studies, as it can process urine samples from up to 10 participants per hour.

"Urinary 8-oxoGsn may reflect the real condition of our bodies better than our chronological age, and may help us to predict the risk of age-related diseases," concludes Cai.
-end-


Frontiers

Related Aging Articles:

Aging-US: 'From Causes of Aging to Death from COVID-19' by Mikhail V. Blagosklonny
Aging-US recently published ''From Causes of Aging to Death from COVID-19'' by Blagosklonny et al. which reported that COVID-19 is not deadly early in life, but mortality increases exponentially with age - which is the strongest predictor of mortality.
Understanding the effect of aging on the genome
EPFL scientists have measured the molecular footprint that aging leaves on various mouse and human tissues.
Muscle aging: Stronger for longer
With life expectancy increasing, age-related diseases are also on the rise, including sarcopenia, the loss of muscle mass due to aging.
Aging memories may not be 'worse, 'just 'different'
A study from the Department of Psychological & Brain Sciences in Arts & Sciences adds nuance to the idea that an aging memory is a poor one and finds a potential correlation between the way people process the boundaries of events and episodic memory.
A new biomarker for the aging brain
Researchers at the RIKEN Center for Biosystems Dynamics Research (BDR) in Japan have identified changes in the aging brain related to blood circulation.
Scientists invented an aging vaccine
A new way to prevent autoimmune diseases associated with aging like atherosclerosis, Alzheimer's disease, and Parkinson's disease was described in the article.
The first roadmap for ovarian aging
Infertility likely stems from age-related decline of the ovaries, but the molecular mechanisms that lead to this decline have been unclear.
Researchers discover new cause of cell aging
New research from the USC Viterbi School of Engineering could be key to our understanding of how the aging process works.
Deep Aging Clocks: The emergence of AI-based biomarkers of aging and longevity
The advent of deep biomarkers of aging, longevity and mortality presents a range of non-obvious applications.
Intelligence can link to health and aging
For over 100 years, scientists have sought to understand what links a person's general intelligence, health and aging.
More Aging News and Aging Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.