How does water change the Moon's origin story?

February 27, 2018

Washington, DC--It's amazing what a difference a little water can make.

The Moon formed between about 4.4 and 4.5 billion years ago when an object collided with the still-forming proto-Earth. This impact created a hot and partially vaporized disk of material that rotated around the baby planet, eventually cooling and accreting into the Moon.

For years, scientists thought that in the aftermath of the collision hydrogen dissociated from water molecules and it and other elements that have low boiling temperatures, so-called "volatile elements," escaped from the disk and were lost to space. This would lead to a dry and volatile element-depleted Moon, which seemed to be consistent with previous analyses of lunar samples.

But ongoing research about the Moon's chemistry is revealing that it may be wetter than initially thought, which raises questions about some aspects of this origin story.

"This is still very much an area of active research, so there is much that scientists, including our Department of Terrestrial Magnetism staff scientist Erik Hauri, as well as many other Carnegie colleagues and alumni, are figuring out about how much water exists in the Moon. This is a highly important and challenging question to answer given that we have limited knowledge on the history and distribution of lunar water," explained Carnegie's Miki Nakajima who, together with Caltech's Dave Stevenson, set out to determine whether prevailing Moon-formation theories needed to be adjusted to account for the more recent higher estimates of lunar water content.

The work is published by Earth and Planetary Science Letters.

They created detailed models to determine whether existing theories about the Moon-forming collision could explain a wet Moon that's still depleted in other volatile elements like potassium and sodium.

They modeled different temperature conditions and water abundances of the Moon-forming disk. At higher temperatures, their disk was dominated by silicate vapor, which came from evaporation of the mantles of both the proto-Earth and the impactor, with a relatively small abundance of hydrogen dissociated from water. At lower temperatures, their disk was dominated by water, from which hydrogen did not disassociate under this temperature range, making its escape mechanism very inefficient.

"The good news is that our models show that observations of a wet Moon are not incompatible with a giant impact origin," Nakajima explained.

However, it also means that scientists need to come up with other explanations for why the Moon is depleted of potassium, sodium, and other volatile elements. Other possibilities exist, such as the volatile elements in the disk falling onto Earth rather than escaping or being part of the Moon's formation. Or potentially they were part of the Moon when it first accreted from the post-collision disk but were later lost.
-end-
This work is supported by NASA Headquarters under the NASA Earth and Space Science Fellowship Program Grant NNX14AP26H and the Carnegie DTM Postdoctoral Fellowship.

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Carnegie Institution for Science

Related Hydrogen Articles from Brightsurf:

Solar hydrogen: let's consider the stability of photoelectrodes
As part of an international collaboration, a team at the HZB has examined the corrosion processes of high-quality BiVO4 photoelectrodes using different state-of-the-art characterisation methods.

Hydrogen vehicles might soon become the global norm
Roughly one billion cars and trucks zoom about the world's roadways.

Hydrogen economy with mass production of high-purity hydrogen from ammonia
The Korea Institute of Science and Technology (KIST) has made an announcement about the technology to extract high-purity hydrogen from ammonia and generate electric power in conjunction with a fuel cell developed by a team led by Young Suk Jo and Chang Won Yoon from the Center for Hydrogen and Fuel Cell Research.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

Hydrogen energy at the root of life
A team of international researchers in Germany, France and Japan is making progress on answering the question of the origin of life.

Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.

Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.

Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.

World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.

Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.

Read More: Hydrogen News and Hydrogen Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.