Nav: Home

Genetics researchers close in on schizophrenia

February 27, 2018

Researchers at the MRC Centre for Neuropsychiatric Genetics and Genomics at Cardiff University have discovered 50 new gene regions that increase the risk of developing schizophrenia. They have also used state-of-the-art information about brain development to accurately pinpoint new genes and biological pathways implicated in this disorder.

The largest of its kind, the study examined genetic data in 100,000 individuals including 40,000 people with a diagnosis of schizophrenia and also found that some of the genes identified as increasing risk for schizophrenia have previously been associated with other neurodevelopmental disorders, including intellectual disability and autism spectrum disorders.

Professor Sir Mike Owen, who leads the MRC Centre at Cardiff University, said: "These findings are another important step on the long road to new treatments for schizophrenia and will be crucial for identifying potential new drugs, which will become an increasing focus of our work in the coming years."

Another significant and unexpected finding was that the genes linked to schizophrenia risk are mostly crucial to normal development and therefore typically do not contain harmful mutations. This discovery will help researchers narrow down their search for the mechanisms of the disorder as these genes, commonly called 'loss-of-function intolerant', only account for around 15% of all the genes in the human genome.

Dr Antonio Pardiñas, first author of the study, said: "We show for the first time that genetic variants that do not severely impact gene function, but presumably have a more subtle impact on these critical genes, increase risk for developing schizophrenia."

The findings also explain a mystery that has puzzled psychiatrists and evolutionary geneticists alike: if people with schizophrenia have, on average, fewer children than people without the disorder, why does schizophrenia still affect so many people?

Dr James Walters, from Cardiff University, who led the study, explains: "Many of the genetic variants that confer risk to schizophrenia are relatively common in the population, and many scientists would have expected them to be selected against by natural selection, become rare and eventually disappear from the population.

"Many theories have emerged to explain this. One of these is that genetic risk for schizophrenia must have, or have had in the past, a positive effect to balance against the negative ones. We did not find any evidence for a so-called 'positive selection' but instead found that many gene variants linked to schizophrenia reside in regions of the genome in which natural selection is not very effective in the first place. Also, most of them do not have individually serious effects, and this makes them less likely to be selected, either for or against."

Professor Sir Mike Owen, said: "The MRC Centre will be working closely with colleagues in Cardiff's Neuroscience and Mental Health Research Institute and the recently established Medicines Discovery Institute, as well as external collaborators, to use these genetic discoveries as the basis for new approaches to treatment."

Dr Rachael Panizzo, Programme Manager for Mental Health and Addiction at the Medical Research Council, added: "This large study provides further evidence of the complex genetics underlying schizophrenia. Advances in our understanding of the biological pathways and mechanisms involved will help uncover new targets for treatment, which could one day translate into better, more personalised care for people living with schizophrenia."

The research 'Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection' is published in the journal Nature Genetics.
-end-


Cardiff University

Related Schizophrenia Articles:

Dietary supplement may help with schizophrenia
A dietary supplement, sarcosine, may help with schizophrenia as part of a holistic approach complementing antipsychotic medication, according to a UCL researcher.
Schizophrenia: Adolescence is the game-changer
Schizophrenia may be related to the deletion syndrome. However, not everyone who has the syndrome necessarily develops psychotic symptoms.
Study suggests overdiagnosis of schizophrenia
In a small study of patients referred to the Johns Hopkins Early Psychosis Intervention Clinic (EPIC), Johns Hopkins Medicine researchers report that about half the people referred to the clinic with a schizophrenia diagnosis didn't actually have schizophrenia.
The ways of wisdom in schizophrenia
Researchers at UC San Diego School of Medicine report that persons with schizophrenia scored lower on a wisdom assessment than non-psychiatric comparison participants, but that there was considerable variability in levels of wisdom, and those with higher scores displayed fewer psychotic symptoms.
Recognizing the uniqueness of different individuals with schizophrenia
Individuals diagnosed with schizophrenia differ greatly from one another. Researchers from Radboud university medical center, along with colleagues from England and Norway, have demonstrated that very few identical brain differences are shared amongst different patients.
Resynchronizing neurons to erase schizophrenia
Today, a decisive step in understanding schizophrenia has been taken.
Genetics researchers close in on schizophrenia
Researchers at the MRC Centre for Neuropsychiatric Genetics and Genomics at Cardiff University have discovered 50 new gene regions that increase the risk of developing schizophrenia.
Looking for the origins of schizophrenia
Schizophrenia may be related to neurodevelopment changes, including brain's inability to create the appropriate vascular system, according to new study resulted from a partnership between the D'Or Institute for Research and Education, the University of Chile and the Federal University of Rio de Janeiro (UFRJ).
Researchers uncover novel mechanism behind schizophrenia
An international team of researchers led by a Case Western Reserve University School of Medicine scientist has uncovered a novel mechanism in which a protein--neuregulin 3--controls how key neurotransmitters are released in the brain during schizophrenia.
A new genetic marker for schizophrenia
Japanese scientists find a rare genetic variant that shows strong association with schizophrenia.
More Schizophrenia News and Schizophrenia Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.