Nav: Home

Teaching quantum physics to a computer

February 27, 2018

Physics students spend many years learning to master the often counterintuitive laws and effects of quantum mechanics. For instance, the quantum state of a physical system may be undetermined until a measurement is made, and a measurement on one part of the system can influence the state of a distant part without any exchange of information. It is enough to make the mind boggle. Once the students graduate and start doing research, the problems continue: to exactly determine the state of some quantum system in an experiment, one has to carefully prepare it and make lots of measurements, over and over again.

Very often, what one is actually interested in cannot even be measured directly. An international team of researchers led by Giuseppe Carleo, a lecturer at the Institute for Theoretical Physics of ETH Zurich, has now developed machine learning software that enables a computer to "learn" the quantum state of a complex physical system based on experimental observations and to predict the outcomes of hypothetical measurements. In the future, their software could be used to test the accuracy of quantum computers.

Quantum physics and handwriting

The principle of his approach, Carleo explains, is rather simple. He uses an intuitive analogy that avoids the complications of quantum physics: "What we do, in a nutshell, is like teaching the computer to imitate my handwriting. We will show it a bunch of written samples, and step by step it then learns to replicate all my a's, l's and so forth."

The way the computer does this is by looking at the ways, for instance, in which an "l" is written when it follows an "a". These may not always be the same, so the computer will calculate a probability distribution that expresses mathematically how often a letter is written in a certain way when it is preceded by some other letter. "Once the computer has figured out that distribution, it could then reproduce something that looks very much like my handwriting", Carleo says.

Quantum physics is, of course, much more complicated than a person's handwriting. Still, the principle that Carleo (who recently moved to the Flatiron Institute in New York), together with Matthias Troyer, Guglielmo Mazzola (both at ETH) and Giacomo Torlai from the University of Waterloo as well as colleagues at the Perimeter Institute and the company D-Wave in Canada have used for their machine learning algorithm is quite similar.

The quantum state of the physical system is encoded in a so-called neural network, and learning is achieved in small steps by translating the current state of the network into predicted measurement probabilities. Those probabilities are then compared to the actually measured data, and adjustments are made to the network in order to make them match better in the next round. Once this training period is finished, one can then use the quantum state stored in the neural network for "virtual" experiments without actually performing them in the laboratory.

Faster tomography for quantum states

"Using machine learning to extract a quantum state from measurements has a number of advantages", Carleo explains. He cites one striking example, in which the quantum state of a collection of just eight quantum objects (trapped ions) had to be experimentally determined. Using a standard approached called quantum tomography, around one million measurements were needed to achieve the desired accuracy. With the new method, a much smaller number of measurements could do the same job, and substantially larger systems, previously inaccessible, could be studied.

This is encouraging, since common wisdom has it that the number of calculations necessary to simulate a complex quantum system on a classical computer grows exponentially with the number of quantum objects in the system. This is mainly because of a phenomenon called entanglement, which causes distant parts of the quantum system to be intimately connected although they do not exchange information. The approach used by Carleo and his collaborators takes this into account by using a layer of "hidden" neurons, which allow the computer to encode the correct quantum state in a much more compact fashion.

Testing quantum computers

Being able to study quantum systems with a large number of components - or "qubits", as they are often called - also has important implications for future quantum technologies, as Carleo points out: "If we want to test quantum computers with more than a handful of qubits, that won't be possible with conventional means because of the exponential scaling. Our machine learning approach, however, should put us in a position to test quantum computers with as many as 100 qubits."

Also, the machine learning software can help experimental physicists by allowing them to perform virtual measurements that would be hard to do in the laboratory, such as measuring the degree of entanglement of a system composed of many interacting qubits. So far, the method has only been tested on artificially generated data, but the researchers plan to use it for analysing real quantum experiments very soon.
-end-
Reference

Torlai G, Mazzola G, Carrasquilla J, Troyer M, Melko R, Carleo G: Neural-network quantum state tomography. Nature Physics (2018), published online 26th Feb 2018. doi: 10.1038/s41567-018-0048-5

ETH Zurich

Related Quantum Physics Articles:

A platform for stable quantum computing, a playground for exotic physics
Harvard University researchers have demonstrated the first material that can have both strongly correlated electron interactions and topological properties, which not only paves the way for more stable quantum computing but also an entirely new platform to explore the wild world of exotic physics.
A new quantum data classification protocol brings us nearer to a future 'quantum internet'
A new protocol created by researchers at the Universitat Autònoma de Barcelona sorts and classifies quantum data by the state in which they were prepared, with more efficiency than the equivalent classical algorithm.
Quantum physics: Ménage à trois photon-style
When two photons become entangled, the quantum state of the first will correlate perfectly with the quantum state of the second.
Quantum physics -- Simulating fundamental interactions with ultracold atoms
An international team of physicists succeeded in precisely engineering key ingredients to simulate a specific lattice gauge theory using ultracold atoms in optical lattices.
A key piece to understanding how quantum gravity affects low-energy physics
In a new study, led by researchers from SISSA (Scuola Internazionale Superiore di Studi Avanzati), the Complutense University of Madrid and the University of Waterloo, a solid theoretical framework is provided to discuss modifications to the Unruh effect caused by the microstructure of space-time.
Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.
Quantum physics and origami for the ultimate get-well card
The bizarre optical properties of tiny metal particles -- smaller than light waves -- can be captured on paper to detect even a single target molecule in a test sample.
Can artificial intelligence solve the mysteries of quantum physics?
A new study published in Physical Review Letters by Prof.
Brilliant glow of paint-on semiconductors comes from ornate quantum physics
A new wave of semiconductors that can be painted on is on the horizon.
New device could help answer fundamental questions about quantum physics
Researchers have developed a new device that can measure and control a nanoparticle trapped in a laser beam with unprecedented sensitivity.
More Quantum Physics News and Quantum Physics Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab