Nav: Home

Wind and solar could meet most but not all US electricity needs

February 27, 2018

Washington, DC--Wind and solar power could generate most but not all electricity in the United States, according to an analysis of 36 years of weather data by Carnegie's Ken Caldeira, and three Carnegie-affiliated energy experts: Matthew Shaner, Steven Davis (of University of California Irvine), and Nathan Lewis (of Caltech).

Right now, about 38 percent of carbon dioxide emissions come from electricity production, which must be reduced to combat climate change.

The team found that as the amount of electricity produced by solar and wind increases, avoiding major blackouts becomes increasingly challenging. Policymakers and planners need to consider that wind and solar resources will have natural variability, the team said.

"Our team took a simplified approach aimed at understanding fundamental geophysical constraints on wind and solar power," explained lead author Shaner. "We looked at solar and wind power availability on an hourly basis across the U.S. and determined how much of current electricity demand could be met by varying amounts of solar panels, wind turbines, and energy storage, in addition to changes in the electricity grid."

According to the team's findings, solar power resources reached peak generating ability in June and July, and wind resources peak in March and April and slump during July and August. So, the resources have a complementary effect that would allow each to help alleviate the other's deficiencies. But this wouldn't be enough to overcome non-seasonal variation in solar and wind resources.

Their assessments showed that reliable electricity generation with 80 percent solar and wind would require a continent-scale transmission grid with at least 12 hours of storage to overcome ordinary day-to-day variation.

But to bump up to 100 percent of electricity coming from solar and wind power would require significantly greater and costlier energy infrastructure changes to overcome seasonal cycles and extreme weather events. It would be necessary to have either the capacity to store the generated electricity for several weeks--something not economically feasible today--or the ability to generate a surplus of electricity, much of which would be infrequently used. Likewise, a continent-scale transmission grid would also be required.

"Our work indicates that wind and solar would need to be supplemented by some kind of dispatchable power like natural gas or huge amounts of storage," Caldeira added. "The natural gas emits greenhouse gases and the storage is super expensive, so we need a search for better ways of supplying electricity when the sun is not shining, and the wind is not blowing."
-end-
The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Carnegie Institution for Science

Related Natural Gas Articles:

Visualizing chemical reactions, e.g. from H2 and CO2 to synthetic natural gas
Scientists at EPFL have designed a reactor that can use IR thermography to visualize dynamic surface reactions and correlate it with other rapid gas analysis methods to obtain a holistic understanding of the reaction in rapidly changing conditions.
Effects of natural gas assessed in study of shale gas boom in Appalachian basin
A new study estimated the cumulative effects of the shale gas boom in the Appalachian basin in the early 2000s on air quality, climate change, and employment.
The uncertain role of natural gas in the transition to clean energy
A new MIT study examines the opposing roles of natural gas in the battle against climate change -- as a bridge toward a lower-emissions future, but also a contributor to greenhouse gas emissions.
Natural-gas leaks are important source of greenhouse gas emissions in Los Angeles
Liyin He, a Caltech graduate student, finds that methane in L.A.'s air correlates with the seasonal use of gas for heating homes and businesses
Enhanced natural gas storage to help reduce global warming
Researchers have designed plastic-based materials that can store natural gas more effectively.
Natural gas storage research could combat global warming
To help combat global warming, a team led by Dr.
UT study shows how to produce natural gas while storing carbon dioxide
New research at The University of Texas at Austin shows that injecting air and carbon dioxide into methane ice deposits buried beneath the Gulf of Mexico could unlock vast natural gas energy resources while helping fight climate change by trapping the carbon dioxide underground.
Hydrogen-natural gas hydrates harvested by natural gas
A recent study has suggested a new strategy for stably storing hydrogen, using natural gas as a stabilizer.
Greener, more efficient natural gas filtration
MIT researchers have developed a new polymer membrane that can dramatically improve the efficiency of natural gas purification, while reducing its environmental impact.
Crystals that clean natural gas
A metal-organic framework that selectively removes impurities from natural gas could allow greater use of this cleaner fossil fuel.
More Natural Gas News and Natural Gas Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.