Detecting cyanide exposure

February 27, 2019

Cyanide exposure can happen occupationally or in low levels from inhaling cigarette smoke -- or from being poisoned by someone out to get you. The effects are fast and can be deadly. But because cyanide is metabolized quickly, it can be difficult to detect in time for an antidote to be administered. Now, in an animal study in ACS' Chemical Research in Toxicology, researchers report a new precise and accurate biomarker of cyanide exposure.

To treat cyanide poisoning, physicians first have to properly diagnose the condition. But symptoms such as dizziness, headaches and low blood pressure could indicate many different illnesses. And current tests for the condition have disadvantages. Directly measuring cyanide levels in samples is not possible in many cases, since it is rapidly cleared from the body. Some indirect markers of the compound are almost as short-lived, while others are also present in foods, such as broccoli, which can confound the analysis. Cyanide is known to react with thiols, which contain sulfur. In addition, evidence suggests that glutathione, an abundant sulfur-containing molecule in the body, could be a first-line of defense against cyanide poisoning. So, Brian Logue and colleagues wondered if a metabolite of glutathione could be a good indication that someone has been around cyanide.

The researchers reacted glutathione with cyanide and found that 2-aminothiazoline-4-oxoaminoethanioc acid (ATOEA) was produced. They then developed a rapid mass spectrometry method to analyze ATOEA in plasma, and saw that they could accurately detect the compound within minutes of exposure in animals. As the level of cyanide increased, so did the level of ATOEA. And when an antidote was given, ATOEA levels decreased. The researchers say that ATOEA also lasts longer in the body than cyanide, allowing more time for detection of this marker following exposure.
-end-
The authors acknowledge funding from the National Institutes of Health and the U.S. Army Medical Research Institute of Chemical Defense.

The abstract that accompanies this study is available here.

The American Chemical Society, the world's largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us on Twitter | Facebook

American Chemical Society

Related Cyanide Articles from Brightsurf:

Identifying biomolecule fragments in ionising radiation
In a new study published in EPJ D, researchers define for the first time the precise exact ranges in which positively and negatively charged fragments can be produced when living cells are bombarded with fast, heavy ions.

Environmental solutions to go global
New Australian technology that could fix some of the world's biggest environmental pollution problems -- oil spills, mercury pollution and fertiliser runoff -- will soon be available to global markets following the signing of a landmark partnership with Flinders University.

Life could have emerged from lakes with high phosphorus
Life as we know it requires phosphorus, and lots of it.

Chemists glimpse the fleeting 'transition state' of a reaction
Chemists at MIT, Argonne National Laboratory, and several other institutions have devised a technique that allows them to determine the structure of the transition state of a reaction by observing the products that result from the reaction.

New study looks to biological enzymes as source of hydrogen fuel
Research from the University of Illinois and the University of California, Davis has chemists one step closer to recreating nature's most efficient machinery for generating hydrogen gas.

New insights into the origin of life
A famous experiment in 1953 showed that amino acids, the building blocks of proteins, could have formed spontaneously under the atmospheric conditions of early Earth.

Airless worms: A new hope against drug-resistant parasites
Toronto scientists have uncovered a metabolic pathway that only exists in parasitic worms.

Cyanide compounds discovered in meteorites may hold clues to the origin of life
Compounds containing iron, cyanide, and carbon monoxide discovered in carbon-rich meteorites by a team of scientists at Boise State University and NASA may have helped power life on early Earth.

Natural plant defense genes provide clues to safener protection in grain sorghum
Weeds often emerge at the same time as vulnerable crop seedlings and sneak between plants as crops grow.

Detecting cyanide exposure
Cyanide exposure can happen occupationally or in low levels from inhaling cigarette smoke -- or from being poisoned by someone out to get you.

Read More: Cyanide News and Cyanide Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.