Abnormal growth of bacterial cells could be linked to anti-microbial resistance

February 27, 2020

Scientists from the University of Surrey have identified mutations in a gene in an Escherichia coli (E. coli) model that could help explain a form of anti-microbial resistance (AMR) known as 'persistence'.

Publishing their findings in the eminent journal PNAS scientists identified these mutations in the gene ydcI, which cause increased numbers of bacterial cells known as persisters. Persisters are a tiny fraction of cells that are present in all bacterial infections. They are known to survive antibiotic treatment and can cause recurrent infections. Their presence in the population means that treatment for some diseases, such as tuberculosis (TB), has to be continued for up to six months, which is expensive and impractical in many countries. Despite their biological importance, very little is known about these persisters.

Using single cell computerised tracking on an E. coli model, researchers found that memory loss -- whereby the bacteria have an increased tendency to 'forget' how to grow normally -- could help to explain persisters' formation. Lacking the memory of their sibling cells, persisters tend to be smaller and slower growing than other cells in the populations.

Scientists found that mutations in the gene ydcI caused more of these forgetful cells and thereby more persisters. These persisters have also been shown to be a hotspot of further development of genetic AMR.

The identification of these gene mutations in ydcl and the ground breaking insight on persister cells could lead to the development of novel therapeutic strategies that target these cells and prevent them becoming resistant to antibiotics.

Johnjoe McFadden, Professor of Molecular Genetics at the University of Surrey, said: "Antimicrobial resistance is a growing threat to global public health, and without effective antibiotics the success of medical treatments will be compromised.

"There is an urgent need within the science community to learn as much as we can about AMR and develop techniques to tackle it. Our findings on persister cells and the identification of the mutations in the gene ydcI in E. coli bacteria are a huge step forward in the fight against AMR and give us a greater understanding of how persister cells operate."

Dr Suzie Hingley-Wilson, Lecturer in Bacteriology at the University of Surrey, said: "What we have found is that persister cells have experienced "memory loss" and forget to grow as they should. This 'forgetfulness' means that they become small, slow and difficult to treat with antibiotics. Persisters are often responsible for reoccurrence of bacterial disease following antibiotic treatment and are a reservoir of further AMR development.

"The more we know about what makes these clinically relevant persisters different, the higher our chances of developing new techniques to tackle AMR."

University of Surrey

Related Memory Articles from Brightsurf:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.

VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.

The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.

A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.

Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.

Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.

Read More: Memory News and Memory Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.