MRI shows blood flow differs in men and women

February 27, 2020

OAK BROOK, Ill. - Healthy men and women have different blood flow characteristics in their hearts, according to a new study published in the journal Radiology: Cardiothoracic Imaging. Researchers said the results could be used to help create quantitative standards that adjust for gender to provide improved assessment of cardiac performance.

Differences in the hearts of men and women have long been known. For instance, women's hearts are smaller in size and beat faster than men's, on average. However, much less is known about the way that blood flows through the hearts of men and women and how that relates to cardiac performance.

For the new study, researchers used a sophisticated imaging technique called 4D flow MRI to study gender differences in the left ventricle, the heart's main pumping chamber. They derived various blood flow parameters from MRI scans obtained from 20 men and 19 women and correlated them with cardiac function.

The data showed some significant differences between the genders. Kinetic energy, which is one indicator of energy expenditure during contraction and filling of the heart, was significantly higher in the left ventricles of men. Vorticity, a measure of regions of rotating flow that form during different points of the cardiac cycle, was higher in women, as was strain, a measure of left ventricular function.

"Using the MRI data, we found differences in how the heart contracts in men and woman," said study lead author David R. Rutkowski, Ph.D., postdoctoral researcher at the University of Wisconsin in Madison. "There was greater strain in the left ventricle wall of women and a higher vorticity in the blood volume. We hypothesize that these two things are related."

The study and the methods it employed have a number of potential applications, Dr. Rutkowski noted, including improved understanding of why the hearts of men and women respond differently to physiological stresses and disease. The results also add information that might one day improve clinical assessment of the heart.

"These blood flow metrics would be useful as reference standards because they are derived from healthy people, so we could use these to compare with someone who is unhealthy," Dr. Rutkowski said.

Dr. Rutkowski emphasized that the ability of 4D flow MRI to provide numbers for various blood flow parameters is especially important.

"There's been a push in the last couple of decades to make MRI more quantitative," he said. "So instead of looking at something and saying it looks normal or different, we can get a number to go with that visual information."

The researchers are currently using 4D flow MRI to look at patients with atrial fibrillation, an irregular heartbeat that can lead to serious complications. Their hope is that MRI will help detect patterns and relationships in the atria, the upper chambers of the heart, similar to those found in the ventricles.

"The goal of our work in general is to move from qualitative MRI to more quantitative MRI," Dr. Rutkowski said. "Getting blood flow and velocity information is just one more metric that is being developed to make MRI more quantitative."
-end-
"Sex Differences in Cardiac Flow Dynamics of Healthy Volunteers." Collaborating with Dr. Rutkowski were Gregory P. Barton, Ph.D., Christopher J. François, M.D., Niti Aggarwal, M.D., and Alejandro Roldán-Alzate, Ph.D.

Radiology: Cardiothoracic Imaging is edited by Suhny Abbara, M.D., University of Texas Southwestern Medical Center, Dallas, and owned and published by the Radiological Society of North America, Inc. (https://pubs.rsna.org/cardiothoracic-imaging)

RSNA is an association of radiologists, radiation oncologists, medical physicists and related scientists promoting excellence in patient care and health care delivery through education, research and technologic innovation. The Society is based in Oak Brook, Ill. (RSNA.org)

For patient-friendly information on cardiac imaging, visit RadiologyInfo.org.

Radiological Society of North America

Related Blood Flow Articles from Brightsurf:

Brain regions with impaired blood flow have higher tau levels
In Alzheimer's disease, impaired blood flow to brain regions coincides with tau protein buildup.

3D ultrasound enables accurate, noninvasive measurements of blood flow
A 3D ultrasound system provides an effective, noninvasive way to estimate blood flow that retains its accuracy across different equipment, operators and facilities, according to a new study.

Blood flow recovers faster than brain in micro strokes
Work by a Rice neurobiologist shows that increased blood flow to the brain is not an accurate indicator of neuronal recovery after a microscopic stroke.

Exercise improves memory, boosts blood flow to brain
Scientists have collected plenty of evidence linking exercise to brain health, with some research suggesting fitness may even improve memory.

3D VR blood flow to improve cardiovascular care
Biomedical engineers are developing a massive fluid dynamics simulator that can model blood flow through the full human arterial system at subcellular resolution.

MRI shows blood flow differs in men and women
Healthy men and women have different blood flow characteristics in their hearts, according to a new study.

Brain blood flow sensor discovery could aid treatments for high blood pressure & dementia
A study led by researchers at UCL has discovered the mechanism that allows the brain to monitor its own blood supply, a finding in rats which may help to find new treatments for human conditions including hypertension (high blood pressure) and dementia.

Blood flow monitor could save lives
A tiny fibre-optic sensor has the potential to save lives in open heart surgery, and even during surgery on pre-term babies.

Changes in blood flow tell heart cells to regenerate
Altered blood flow resulting from heart injury switches on a communication cascade that reprograms heart cells and leads to heart regeneration in zebrafish.

Blood flow command center discovered in the brain
An international team of researchers has discovered a group of cells in the brain that may function as a 'master-controller' for the cardiovascular system, orchestrating the control of blood flow to different parts of the body.

Read More: Blood Flow News and Blood Flow Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.