Newly discovered driver of plant cell growth contradicts current theories

February 27, 2020

The shape and growth of plant cells may not rely on increased fluidic pressure, or turgor, inside the cell as previously believed. Rather, a new study shows the swelling of tiny pectin filaments within the cell wall propels these morphological changes. If true, this discovery could overturn the current textbook model for plant cell expansion, and it suggests similar biochemical processes could underlie cell growth in other organisms as well, including animals. The authors also hope their observations inspire the development of new smart materials mimicking the unique expansion of plant cell walls. Composed of a network of puzzle-like pieces, called pavement cells, the outermost layer of plants protects the structure and integrity of the specialized cells within. The walls of pavement cells are composed of polysaccharides, proteins and pectins and can shift between different states in response to chemical cues to support cell shape, size and division. But just how cell wall components contribute to the shaping and expansion of the puzzle-like cells is yet unclear. Kalina Haas and colleagues studied the morphogenesis of pavement cells in Arabidopsis cotyledon (the first leaves to emerge from a germinating seed). They employed data sonification methods to perceptualize the wide variety of pavement cell shapes with sound. Using super-resolution imaging techniques to home in on homogalacturonan (HG) polysaccharides, a kind of pectin in the cell wall, the researchers found that these polysaccharides assemble into discrete nanofilaments rather than a cross-linked network bound to structural proteins. Though the microscopy methods could not provide a closer look at these structures, Haas et al. postulated that HG are multi-subunit structures that, when demethylated, shift from their crystalline state into a swelling state that leads to wall expansion and growth of "lobes" on the pavement cells. They validated their hypothesis in models whereby they simulated lobe development in cotyledon and induced demethylation of pectin components in the cell wall. This altered the plant cell shape despite the absence of hydration and turgor pressure.

American Association for the Advancement of Science

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to