MRSA use amoeba to spread, new research shows

February 28, 2006

The MRSA 'superbug' evades many of the measures introduced to combat its spread by infecting a common single-celled organism found almost everywhere in hospital wards, according to new research published in the journal Environmental Microbiology.

Scientists from the University of Bath have shown that MRSA infects and replicates in a species of amoeba, called Acanthamoeba polyphaga, which is ubiquitous in the environment and can be found on inanimate objects such as vases, sinks and walls.

As amoeba produce cysts to help them spread, this could mean that MRSA maybe able to be 'blown in the wind' between different locations.

Further evidence from research on other pathogens suggests that by infecting amoeba first, MRSA may emerge more virulent and more resistant to antibiotics when it infects humans.

"Infection control policies for hospitals should recognise the role played by amoeba in the survival of MRSA, and evaluate control procedures accordingly," said Professor Mike Brown from the Department of Pharmacy and Pharmacology at the University of Bath.

"Until now this source of MRSA has been totally unrecognised. This is a non-patient source of replication and given that amoeba and other protozoa are ubiquitous, including in hospitals, they are likely to contribute to the persistence of MRSA in the hospital environment".

"Adding to the concern is that amoebal cysts have been shown to trap pathogens and could potentially be dispersed widely by air currents, especially when they are dry.

"Replication of MRSA in amoeba and other protozoa raises several important concerns for hospital hygiene."

In laboratory tests, the researchers found that within 24 hours of its introduction, MRSA had infected around 50 per cent of the amoeba in the sample, with 2 per cent heavily infected throughout their cellular content.

Evidence with other pathogens suggests that pathogens that emerge from amoeba are more resistant to antibiotics and more virulent.

"This makes matters even more worrying," said Professor Brown.

"It is almost as though the amoeba act like a gymnasium; helping MRSA get fitter and become more pathogenic".

"In many ways this may reflect how this kind of pathogenic behaviour first evolved. A good example is the bacterium that causes legionnaires disease. Probably it was pathogenic long before humans and other animals arrived on the evolutionary scene. Even today, it has no known animal host".

"The most likely reason is that Legionella and many pathogens learned their pathogenicity after sparring with single-celled organisms like amoeba for millions of years. Because our human cells are very similar to these primitive, single-celled organisms, they have acquired the skills to attack us".

For these reasons, such primitive cells are being used to replace animals for many kinds of biological tests.

"Effective control of MRSA within healthcare environments requires better understanding of their ecology," said Professor Brown.

"We now need to focus on improving our understanding of exactly how MRSA is transmitted, both in hospitals and in the wider environment, to develop control procedures that are effective in all scenarios."

Recently released figures show that infections caused by MRSA rose 5 per cent between 2003 and 2004, and mortality rates increased 15-fold between 1993 and 2002.
-end-
The research paper is published online at: http://www.blackwell-synergy.com/doi/full/10.1111/j.1462-2920.2006.00991.x

It will appear in the June or July print issue of Environmental Microbiology which will be published mid-May or mid-June respectively.

The work was funded by The Lord Dowding Fund for Humane Research and also the UK Department of Health.

University of Bath

Related MRSA Articles from Brightsurf:

Widely available antibiotics could be used in the treatment of 'superbug' MRSA
Some MRSA infections could be tackled using widely-available antibiotics, suggests new research from an international collaboration led by scientists at the University of Cambridge and the Wellcome Sanger Institute.

Computer model shows how to better control MRSA outbreaks
A research team led by scientists at the Columbia University Mailman School of Public Health report on a new method to help health officials control outbreaks of methicillin-resistant Staphylococcus aureus, or MRSA, a life-threatening antibiotic-resistant infection often seen in hospitals.

Using MRSA's strength against it
MRSA evolved to become a deadly killer because it's wily and resilient.

Livestock-associated MRSAfound among MRSA from humans
The survey results show more frequent detections and geographical dispersion of LA-MRSA in humans in the EU/EEA since 2007, and highlight the public health and veterinary importance of LA-MRSA as a 'One Health' issue.

Fighting MRSA with new membrane-busting compounds
Public health officials are increasingly concerned over methicillin-resistant Staphylococcus aureus (MRSA).

Know thy enemy: Kill MRSA with tailored chemistry
UConn medicinal chemists have developed experimental antibiotics that kill MRSA, a common and often deadly bacteria that causes skin, lung, and heart infections.

MRSA uses decoys to evade a last-resort antibiotic
The superbug MRSA uses decoys to evade a last-resort antibiotic, reveals new research.

Scientists find a salty way to kill MRSA
Scientists have discovered a new way to attack Staphylococcus aureus bacteria.

Experimental antibiotic treats deadly MRSA infection
A new experimental antibiotic developed by a team of scientists at Rutgers University successfully treats the deadly MRSA infection and restores the efficacy of a commonly prescribed antibiotic that has become ineffective against MRSA.

OU team develops new antibiotic to fight MRSA
A University of Oklahoma team of chemists has developed a new antibiotic formulation to fight the sometimes deadly staph infection caused by methicillin-resistant S. aureus or MRSA and other antibiotic-resistant infectious bacteria.

Read More: MRSA News and MRSA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.