Space race under way to create quantum satellite

February 28, 2013

In this month's special edition of Physics World, focusing on quantum physics, Thomas Jennewein and Brendon Higgins from the Institute for Quantum Computing at the University of Waterloo, Canada, describe how a quantum space race is under way to create the world's first global quantum-communication network.

The field of quantum communication - the science of transmitting quantum states from one place to another - has received significant attention in the last few years owing to the discovery of quantum cryptography.

Quantum cryptography exploits a unique property of single particles, such as photons: they can exist in two separate states - such as vertically polarized or horizontally polarized - or something in-between, known as a quantum superposition. Upon measuring the state of a particle you instantly change this state, meaning an encryption key made of photons can be passed between two parties safe in the knowledge that if an eavesdropper intercepts it, this would be noticed.

Quantum cryptography has been described as a way of creating "unbreakable" messages and has attracted the attention of major technology companies, governments, banks and other security-focused clients.

The transmission of encryption keys over long distances still remains a significant challenge for scientists, however, as the intensity of signals tends to weaken as they travel further because photons get absorbed or scattered off molecules.

Up until now, the furthest that quantum-communication signals have been sent is a few hundred kilometres, which would realistically enable communication between just one or two cities.

There is one place, however, where scattering doesn't appear to happen - empty space. Jennewein and Higgins lead just one of several teams around the world looking to take advantage of this by pursuing the concept of a quantum satellite.

A signal travelling from a ground station on Earth to a satellite would spend most of its time in the empty vacuum of space - rather than in Earth's atmosphere, which is crowded with gas molecules - so the signal would travel a lot further without weakening.

A satellite orbiting at around 32000 km above Earth would act as a kind of relay between two ground stations in a way that allows them to establish a secure link by sharing an encryption key made of photons.

In addition to the basic mass and power of the satellite itself, the team led by Jennewein and Higgins has been studying the overall design features of the satellite and ground stations and has emphasized the need for them both to be precisely aligned so they can be certain that what they are measuring correctly corresponds to the photons that are prepared.

"With the prospect of global-scale quantum communications and fundamental quantum science within new, unexplored regimes, the next few years are sure to be exciting," Jennewein and Higgins write.

Also in this issue:
Please mention Physics World as the source of these items and, if publishing online, please include a hyperlink to:

Notes for editors:

1. Physics World is the international monthly magazine published by the Institute of Physics. For further information or details of its editorial programme, please contact the editor, Dr Matin Durrani, tel +44 (0)117 930 1002. The magazine's website is updated regularly and contains daily physics news and regular audio and video content. Visit

2. For copies of the articles reviewed here contact Mike Bishop, IOP press officer, tel +44 (0)11 7930 1032, e-mail

3. The Institute of Physics is a leading scientific society. We are a charitable organization with a worldwide membership of more than 45,000, working together to advance physics education, research and application.

We engage with policy-makers and the general public to develop awareness and understanding of the value of physics and, through IOP Publishing, we are world leaders in professional scientific communications. Visit us at

IOP Publishing

Related Quantum Computing Articles from Brightsurf:

Bringing a power tool from math into quantum computing
The Fourier transform is a mathematical operation essential to virtually all fields of physics and engineering.

New detector breakthrough pushes boundaries of quantum computing
A new paper published in Nature shows potential for graphene bolometers to become a game-changer for quantum technology

A molecular approach to quantum computing
Molecules in quantum superposition could help in the development of quantum computers.

Cosmic rays may soon stymie quantum computing
Infinitesimally low levels of radiation, such as from incoming cosmic rays, may soon stymie progress in quantum computing.

UVA pioneers study of genetic diseases with quantum computing
Scientists are harnessing the mind-bending potential of quantum computers to help us understand genetic diseases - even before quantum computers are a thing.

New method predicts spin dynamics of materials for quantum computing
Researchers at UC Santa Cruz have developed a theoretical foundation and new computational tools for predicting a material's spin dynamics, a key property for building solid-state quantum computing platforms and other applications of spintronics.

Speeding-up quantum computing using giant atomic ions
An international team of researchers have found a new way to speed up quantum computing that could pave the way for huge leaps forward in computer processing power.

Boson particles discovery provides insights for quantum computing
Researchers working on a U.S. Army project discovered a key insight for the development of quantum devices and quantum computers.

In leap for quantum computing, silicon quantum bits establish a long-distance relationship
In an important step forward in the quest to build a quantum computer using silicon-based hardware, researchers at Princeton have succeeded in making possible the exchange of information between two qubits located relatively far apart -- about the length of a grain of rice, which is a considerable distance on a computer chip.

Diversity may be key to reducing errors in quantum computing
In quantum computing, as in team building, a little diversity can help get the job done better, computer scientists have discovered.

Read More: Quantum Computing News and Quantum Computing Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to