Modified bacteria turn waste into fat for fuel

February 28, 2013

HOUSTON - (Feb. 28, 2013) - "Green" chemistry developed at Rice University is at the center of a new government effort to turn plant waste into fatty acids, and then into fuel.

The Rice lab of bioengineer Ka-Yiu San is part of a recently announced $25 million United States Department of Agriculture project to develop a new generation of renewable energy and bio-based products from switchgrass and forestry residues and from a new hybrid of sorghum being developed at Texas A&M University.

Patent-pending fermentation processes created by San and his colleagues use genetically modified E. coli bacteria to produce fatty acids from hydrolysates. The sugary, carbon-rich hydrolysate is extracted from cellulose, the tough, inedible part of plants that is usually thrown away. San said his lab already gets an 80-to-90 percent yield of fatty acids from model sugars and hopes to improve that over the next few years.

"Adding another 1 or 2 percent doesn't seem like much," said San, based at Rice's BioScience Research Collaborative. "But when you're talking about making several million tons per year, it's huge."

The target products are synthetic diesel and lubricants, according to Ceramatec Inc., a Utah-based company that proposed the project and would produce hydrocarbons from fatty acids that could then be processed by petroleum refineries.

There are two ways to make fuel (from biomass)," said Mukund Karanjikar, innovation manager at Technology Holding LLC, which is administering the project. "You either make alcohols, or you make petroleum-like fuels that can go into current infrastructure. Our program is for infrastructure-compatible transportation fuels.

"There aren't many ways to go from sugars to a diesel-like compound," he said. "The best way is to make fatty acids from the sugars microbially, as many labs have tried to do. But the Rice University process is definitely the winner."

Postdoctoral researchers Xiujun Zhang and Mai Li have been nudging their bacteria toward efficient production of fatty acids for four years, San said. Zhang is responsible for the development of enzymes in E. coli that promote the efficient formation of free fatty acids, while Li, now at GlycosBio, worked to build microbial host strains for high-yield production.

"They have been instrumental to this project," he said. "In four years, with two postdocs, we beat everybody, even groups with dozens of members."

San said the researchers screened hundreds of strains of E. coli and genetically combined the best qualities to reach a high yield. "Other scientists thought we couldn't come close to a maximum yield," San recalled. "They said E. coli only needs to build enough lipid (fat) for its membrane and would stop."

That, as it turned out, was not true. "In fact, one of the strains we developed is very interesting: Instead of excreting the fatty acid, it wants to keep it inside. So more than 70 percent of the weight of these cells is fatty acid. These are obese E. coli," San said.

Since the project began, the researchers have increased their production 100-fold, San said. "We started with a titer of 0.4 grams per liter, and we were excited when we first produced 1 gram. Now we're up to 14 grams per liter and looking at ways to fine-tune the process. But at this point, the bug will not change that much."

Still, it will take time to scale up. "We have to be sure the bug is perfected and robust enough for industry," San said. "Strains that behave well in the lab may not do as well in an industrial setting." He said the development path will involve testing by independent labs to make sure the process is repeatable, and then initial scaling by a pilot plant in two or three years.

"I think this is a very rich area," San said. "When we started this project four years ago, nobody had paid attention to fatty acids. But I knew this would be a good model system with endless variations that could lead to real products."
-end-
The E. coli strains were developed in a project funded by the National Science Foundation's Engineering Research Center for Renewable Chemicals. San is Rice's E.D. Butcher Professor of Bioengineering and a professor of chemical and biomolecular engineering.

This news release can be found online at http://news.rice.edu/2013/02/28/modified-bacteria-turn-waste-into-fat-for-fuel/

Follow Rice News and Media Relations via Twitter @RiceUNews

Related Materials:

Ka-Yiu San Group: http://www.ruf.rice.edu/~ksan/

USDA announcement: http://tinyurl.com/bl3yn9n

The Center for Biorenewable Chemicals: http://www.cbirc.iastate.edu

Images for download:

http://news.rice.edu/wp-content/uploads/2013/02/0305_BIOMASS-1-web.jpg

http://news.rice.edu/wp-content/uploads/2013/02/0305_BIOMASS-2-web.jpg

Rice University bioengineer Ka-Yiu San holds a beaker of fatty acid produced by genetically modified E. coli from biomass. San's lab is part of a Department of Agriculture product to turn plant waste into fuels and lubricants. (Credit: Jeff Fitlow/Rice University)

http://news.rice.edu/wp-content/uploads/2013/02/0305_BIOMASS-3-web.jpg

http://news.rice.edu/wp-content/uploads/2013/02/0305_BIOMASS-4-web.jpg

Feeding a plant waste-derived "sugar sauce" to genetically modified E. coli bacteria produces fatty acids in a project under development at Rice University. The carbon-rich acids can then be turned into fuel. Rice is part of a project funded by the Department of Agriculture to scale up the production of fuel and other petroleum-like products from biomass. (Credit: Jeff Fitlow/Rice University)David Ruth
713-348-6327
david@rice.edu

Mike Williams
713-348-6728
mikewilliams@rice.edu

Rice University

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.