Pour, shake and stir

February 28, 2013

TORONTO, Ontario (Feb. 28, 2013) - A diagnostic "cocktail" containing a single drop of blood, a dribble of water, and a dose of DNA powder with gold particles could mean rapid diagnosis and treatment of the world's leading diseases in the near future. The cocktail diagnostic is a homegrown brew being developed by University of Toronto's Institute of Biomaterials and Biomedical Engineering (IBBME) PhD student Kyryl Zagorovsky and Professor Warren Chan that could change the way infectious diseases, from HPV and HIV to malaria, are diagnosed.

And it involves the same technology used in over-the-counter pregnancy tests.

"There's been a lot of emphasis in developing simple diagnostics," says IBBME Professor and Canada Research Chair in Nanobiotechnology, Warren Chan. "The question is, how do you make it simple enough, portable enough?"

The recent winner of the NSERC E.W.R. Steacie Memorial Fellowship, Professor Chan and his lab study nanoparticles: in particular, the use of gold particles in sizes so small that they are measured in the nanoscale. Chan and his group are working on custom-designing nanoparticles to target and illuminate cancer cells and tumours, with the potential of one day being able to deliver drugs to cancer cells.

But it's a study recently published in Angewandte Chemie, a top chemistry journal published out of Germany, that's raising some interesting questions about the future of this relatively new frontier of science.

Zagorovsky's rapid diagnostic biosensor will allow technicians to test for multiple diseases at one time with one small sample, and with high accuracy and sensitivity. The biosensor relies upon gold particles in much the same vein as your average pregnancy test. With a pregnancy test, gold particles turn the test window red because the particles are linked with an antigen that detects a certain hormone in the urine of a pregnant woman.

"Gold is the best medium," explains Chan, "because it's easy to see. It emits a very intense colour."

Currently scientists can target the particular disease they are searching for by linking gold particles with DNA strands: when a sample containing the disease gene (ie. Malaria) is present, it clumps the gold particles, turning the sample blue. Rather than clumping the particles together, Zagorovsky immerses the gold particles in a DNA-based enzyme solution (DNA-zyme) that, when the disease gene is introduced, 'snip' the DNA from the gold particles, turning the sample red.

"It's like a pair of scissors," Zagorovsky explains, "and the target gene activates the scissors that cut the DNA links holding gold particles together."

The advantage is that far less of the gene needs to be present for the solution to show noticeable colour changes, amplifying detection. A single DNA-zyme can clip up to 600 "links" between the target genes.

Just a single drop from a biological sample such as saliva or blood can potentially be tested in parallel, so that multiple diseases can be tested for in one sitting.

But the team has also demonstrated that they are able to transform the testing solution into a powder, making it light and far easier to ship than solutions, which degrade over time. Powder can be stored for years at a time, and offers hope that the technology can be developed into efficient, cheap, over-the-counter tests for diseases such as HIV and malaria for developing countries, where access to portable diagnostics is a necessity.

"We've now put all the pieces together," says Chan.
-end-
The Institute of Biomaterials and Biomedical Engineering (IBBME) is an interdisciplinary unit situated between three Faculties at the University of Toronto: Applied Science and Engineering, Dentistry and Medicine. The Institute pursues research in four areas: neural, sensory systems and rehabilitation engineering; biomaterials, tissue engineering and regenerative medicine; molecular imaging and biomedical nanotechnology; medical devices and clinical technologies.

University of Toronto Faculty of Applied Science & Engineering

Related Malaria Articles from Brightsurf:

Clocking in with malaria parasites
Discovery of a malaria parasite's internal clock could lead to new treatment strategies.

Breakthrough in malaria research
An international scientific consortium led by the cell biologists Volker Heussler from the University of Bern and Oliver Billker from the UmeƄ University in Sweden has for the first time systematically investigated the genome of the malaria parasite Plasmodium throughout its life cycle in a large-scale experiment.

Scientists close in on malaria vaccine
Scientists have taken another big step forward towards developing a vaccine that's effective against the most severe forms of malaria.

New tool in fight against malaria
Modifying a class of molecules originally developed to treat the skin disease psoriasis could lead to a new malaria drug that is effective against malaria parasites resistant to currently available drugs.

Malaria expert warns of need for malaria drug to treat severe cases in US
The US each year sees more than 1,500 cases of malaria, and currently there is limited access to an intravenously administered (IV) drug needed for the more serious cases.

Monkey malaria breakthrough offers cure for relapsing malaria
A breakthrough in monkey malaria research by two University of Otago scientists could help scientists diagnose and treat a relapsing form of human malaria.

Getting to zero malaria cases in zanzibar
New research led by the Johns Hopkins Center for Communication Programs, Ifakara Health Institute and the Zanzibar Malaria Elimination Program suggests that a better understanding of human behavior at night -- when malaria mosquitoes are biting -- could be key to preventing lingering cases.

Widely used malaria treatment to prevent malaria in pregnant women
A global team of researchers, led by a research team at the Liverpool School of Tropical Medicine (LSTM), are calling for a review of drug-based strategies used to prevent malaria infections in pregnant women, in areas where there is widespread resistance to existing antimalarial medicines.

Protection against Malaria: A matter of balance
A balanced production of pro and anti-inflammatory cytokines at two years of age protects against clinical malaria in early childhood, according to a study led by ISGlobal, an institution supported by ''la Caixa'' Foundation.

The math of malaria
A new mathematical model for malaria shows how competition between parasite strains within a human host reduces the odds of drug resistance developing in a high-transmission setting.

Read More: Malaria News and Malaria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.