Nav: Home

Optical generation of ultrasound via photoacoustic effect

February 28, 2017

WASHINGTON, D.C., Feb. 28, 2017 -- Limitations of the piezoelectric array technologies conventionally used for ultrasonics inspired a group of University College London researchers to explore an alternative mechanism for generating ultrasound via light, also known as the photoacoustic effect. Coupling this with 3-D printing, the group was able to generate sounds fields with specific shapes for potential use in biological cell manipulation and drug delivery.

Piezoelectric materials generate mechanical stress in response to an applied electric field, resulting in a usable and precisely controllable force that can, for example, be used to create sound waves. But achieving this control with conventional piezoelectric arrays requires both complicated electronics and large numbers of extremely small individual components which are expensive and difficult to manufacture.

The photoacoustic effect, in contrast, occurs when a short pulse or modulated source of light is absorbed by a material, producing a sound wave. As the group reports in this week's Applied Physics Letters, from AIP Publishing, their work focuses on using the photoacoustic effect to control ultrasound fields in 3-D.

"One useful feature of the photoacoustic effect is that the initial shape of the sound that's generated is determined [by] where the light is absorbed," said Michael Brown, a doctoral student at the Biomedical Ultrasound Group of the Department of Medical Physics and Biomedical Engineering at University College London. "This can be used to create tightly focused intense points of sound just by depositing an optical absorber on a concave surface, which acts like a lens."

More generally, it's possible to manufacture samples with nearly any surface shape by using a 3-D printer and a transparent material.

"By depositing an optical absorber on this surface, which can be done via spray painting, a sound wave of nearly any shape can be created by illuminating this sample with a laser," Brown said. "If you carefully tailor the design of the surface and therefore the shape of the acoustic wave, it's possible to control where the sound field will focus and even create fields focused over continuous shapes. We're using letters and numbers."

This is particularly significant because, in theory, the ability to control the shape of the wavefront -- the surface over which the sound wave has a constant phase, somewhat like the edge of the wave -- enables a large degree of control over the resulting field.

"But actually designing a wavefront that generates a desired pattern becomes more challenging as the complexity of the target increases," Brown said. "A clear 'best' design is only available for a few select cases, such as the generation of a single focus."

To overcome this limitation, the group "developed an algorithm that allows users to input a desired sound field in 3-D, and it then outputs a 3-D printable surface profile that generates this field," Brown said. "Our algorithm allows for precise control of the intensity of sound at different locations and the time at which the sound arrives, making it quick and easy to design surfaces or 'lenses' for a desired application."

Brown and his colleagues demonstrated the effectiveness of their algorithm by creating a lens designed to generate a sound field shaped like the numeral 7. After illuminating the lens by a pulsed laser, they recorded the sound field and the desired "7" was clearly visible with high contrast.

"It was the first demonstration of generating a multi-focal distribution of sound using this approach," Brown said.

There are many potential uses for the tailored optoacoustic profiles created by the group. "Highly intense sound can cause heating or exert forces on objects, such as in acoustic tweezers," Brown said. "And similar single-focus devices are already being used for cleaving cell clusters and targeted drug delivery, so our work could be useful within that area."

The group is also interested in the effects of propagating through tissue, which introduces distortions to the shape of wavefronts caused by variations in the speed of sound. "If the structure of the tissue is known beforehand via imaging, our approach can be used to correct for these aberrations," Brown said. "Manipulating the shape and time during which the focused sound is generated can also be useful for the maneuvering and controlling biological cells and other particles."

Going forward, Brown and his group hope to investigate the use of other light sources and what advantages they might offer.

"One limitation of our work was the use of a single-pulsed laser," Brown said. "This meant that the temporal shape of the sound generated from the sample was only one short pulse, which limited the complexity of the fields that could be generated. In the future, we're interested in using alternative modulated optical sources to illuminate these devices."
-end-
The article, "Generating arbitrary ultrasound fields with tailored optoacoustic surface profiles," is authored by Michael Brown, Daniil Nikitichev, Bradley E. Treeby and Ben Cox. The article will appear in the journal Applied Physics Letters Feb. 28, 2017 (DOI: 10.1063/1.4976942). After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.4976942.

ABOUT THE JOURNAL

Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See http://apl.aip.org.

American Institute of Physics

Related Drug Delivery Articles:

More efficient drug delivery within the brain by utilizing LAT1
According to a new study carried out at the University of Eastern Finland, the distribution of drug molecules within the brain can be improved by utilizing LAT1, which is expressed highly in the brain.
Researchers improve drug delivery through mesoporous materials
In a paper to be published in the forthcoming issue in NANO, a group of researchers from Guiyang, China, have conducted a study based on previous experimental research on DOX as a model drug and introduced a reverse method in which organic groups are grafted after removing the template agent.
Charcoal-based drug delivery system improves efficacy of common herpes drug
A study led by researchers from the University of Illinois at Chicago has found that combining acyclovir -- a commonly prescribed topical herpes medication -- with particles of activated carbon improves efficacy of the drug.
DNA folds into a smart nanocapsule for drug delivery
New study of University of Jyvaskyla and Aalto University shows that nanostructures constructed of DNA molecules can be programmed to function as pH-responsive cargo carriers, paving the way towards functional drug-delivery vehicles.
Scientists compared ways of drug delivery to malignant tumors
A team of biologists from Sechenov First Moscow State Medical University and Lobachevsky University (Nizhny Novgorod) analyzed available methods of targeted drug delivery to malignant tumors.
More Drug Delivery News and Drug Delivery Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...