Nav: Home

Another step in understanding antipsychotic medication

February 28, 2017

After much deliberation and anxiety, the family finally sought psychiatric help for their son. And the results were in a way, a relief. The doctors' verdict was that their child, their teenage son, was suffering from bipolar disorder. His wild mood swings between hyper-enthusiastic activity and deep depression were treatable.

Once therapy started, however, it became apparent that standard drugs - effective in most cases - were not working here. And so, doctors turned to a less preferred drug called Clozapine. Though effective in controlling the manic-depressive cycles, one of the many side effects of the drug were very apparent - sedation - extreme sleepiness and fatigue. This side effect can severely hamper a recovering patient's integration back into normal society. As of now, the mechanisms by which such side effects occur are poorly understood, and options for treating them are limited.

But, a recent study, on the drug Clozapine from the National Centre for Biological Sciences (NCBS), Bangalore holds out new hope for such cases. The work by Radhika Joshi from Mitradas Panicker's group at NCBS has proven that the molecule 5-HT2A in the brain is partially responsible for the sedative effects of Clozapine. Furthermore, the team has also discovered that the drug-induced sedation can be affected by environmental factors.

The drug Clozapine helps manage symptoms of depression and anxiety by binding to receptor molecules in the brain that respond to neurotransmitters - chemicals used by nerve cells to communicate with each other. Clozapine mainly targets receptors for the neurotransmitters serotonin and dopamine. Amongst these, 5-HT2A is a serotonin receptor that was identified as one that could be partially responsible for the sedative effects of Clozapine.

Radhika in collaboration with Dr. Rupasri Ain and co-workers generated and characterized a genetically modified mice to test if the 5-HT2A receptor was involved in the sedative side effects of Clozapine. When given Clozapine, mutant mice lacking the 5-HT2A receptor were found to be more active and less sensitive to sedation than normal mice. But while conducting these studies, the researchers also noticed that the environment played a role in modulating these effects.

"While most work on drugs focuses on improving their therapeutic effects, side effects are often ignored - and sometimes side effects can be severe enough to result in non-compliance and require secondary medication," says Radhika Joshi, a doctoral student in Panicker's laboratory. "Our observations indicated that the environment can modulate the side effect of an antipsychotic. This has not been reported before, and so we investigated." she adds.

When either normal mice or mice without the 5-HT2A receptor were given Clozapine in their "home" environments - in cages where the mice are normally housed - the animals were less active and more sensitive to sedation. However, when the drug was given in a "novel" cage or if a new object such as a toy was put in their home cages, the mice were less somnolent, particularly the 5-HT2A knockout mice. Having something different in their surroundings served to decrease the drowsy effects of Clozapine and this effect was more pronounced in the mice lacking the 5-HT2A receptor. Further investigations also revealed that Clozapine sedation could be reduced if the mice were given caffeine before the drug.

"We believe that a novel environment is often stimulating to organisms and this stimulation helps overcome the sedation induced by an antipsychotic, as does caffeine," says Joshi. At the same time, she advises caution in interpreting the results of this study. "Our experiments were conducted on mice and a direct extrapolation to human contexts must be done with utmost caution," she says.

Despite her warning, Joshi is hopeful that their results on environmental context and caffeine can potentially help doctors develop real life strategies for managing the side effects of antipsychotics without secondary medication. "Our results are one of the first few steps towards designing of drugs that are safer and with lesser side effects though a lot more work is needed before we can expect better drugs, we are getting there" she adds.
-end-


National Centre for Biological Sciences

Related Bipolar Disorder Articles:

Underlying molecular mechanism of bipolar disorder revealed
Researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP), with major participation from Yokohama School of Medicine, Harvard Medical School, and UC San Diego, have identified the molecular mechanism behind lithium's effectiveness in treating bipolar disorder patients.
Researchers develop online support for people with bipolar disorder
An online relapse prevention tool for bipolar disorder offers a 'cheap accessible option' for people seeking support following treatment, say researchers.
Bipolar disorder candidate gene, validated in mouse experiment
Researchers at Ulsan National Institute of Science and Technology (UNIST) in South Korea has made a significant breakthrough in the search for the potential root causes of bipolar disorder.
Novel risk genes for bipolar disorder
A research collaboration in Japan, led by Dr. Nakao Iwata, professor at the Fujita Health University, conducted a genome-wide association study of bipolar disorder (BD), and identified novel risk genes.
People with bipolar disorder more than twice as likely to have suffered child adversity
A University of Manchester study which looked at more than thirty years of research into bipolar, found that people with the disorder are 2.63 times more likely to have suffered emotional, physical or sexual abuse as children than the general population.
Brain structural effects of psychopharmacological treatment in bipolar disorder
Bipolar disorder is associated with subtle neuroanatomical deficits. This review considers evidence that lithium, mood stabilizers, antipsychotic medication and antidepressant medications are associated with neuroanatomical variation.
Changes in brain connectivity protect against developing bipolar disorder
Naturally occurring changes in brain wiring can help patients at high genetic risk of developing bipolar disorder avert the onset of the illness, according to a new study led by researchers at the Icahn School of Medicine at Mount Sinai and published online today in the journal Translational Psychiatry.
Possible mechanism for specific symptoms in bipolar disorder discovered
Researchers at Karolinska Institutet, and the Sahlgrenska Academy at Gothenburg University in Sweden have identified a gene variant linked to psychotic symptoms and cognitive impairment in people with bipolar disorder.
Certain antidepressants linked to heightened risk of mania and bipolar disorder
Taking certain antidepressants for depression is linked to a heightened risk of subsequent mania and bipolar disorder, reveals research published in the online journal BMJ Open.
Lithium safe, effective for children with bipolar disorder
A multicenter study of young patients with bipolar disorder provides what may be the most scientifically rigorous demonstration to date that lithium -- a drug used successfully for decades to treat adults with the condition -- can also be safe and effective for children suffering from it.

Related Bipolar Disorder Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".