Nav: Home

In flow state

February 28, 2017

Ever wonder why you have to shake your bottle of ketchup or mustard before pouring? Or why, to get out of quicksand, you must move slowly? Or why you can run on the surface of a suspension of cornstarch in water, but you'd sink if you tried to walk on it?

The common feature of all these conundrums are non-Newtonian fluids, whose mechanical properties change depending on the level and type of force applied to them. They're encountered all the time in daily life, but most people don't know just how highly engineered they can be, with carefully formulated particles, polymers and other additives to give them their desired flow behavior.

"To design these fluids, you need to understand these same properties from both an application and processing standpoint," said Matthew Helgeson, a professor in the UC Santa Barbara Department of Chemical Engineering. "For instance, condiments are designed to be thick so you can get them out of the bottle and spread them on your sandwich without running all over the place, but at the same time they need to be able to be mixed and bottled quickly when made in the factory."

Despite their ubiquitous use, these and other complex fluids are challenging to engineer because the relationships between microscopic behavior and flow properties are difficult to observe, said Helgeson. On a macroscopic level it's easy to see how the material responds to stress, but what happens structurally as it reacts to force remains somewhat of a mystery.

However, that engineering quandary is about to change. In a partnership with Austria-based laboratory instrumentation manufacturer Anton Paar, Helgeson's lab has developed new measurement methods for a specialized, state-of-the-art rheometer that not only allows researchers to characterize the mechanical behavior of non-Newtonian liquids and soft matter, but also to witness at the microscopic level how the fluid and structures flow and deform in response to stress. The knowledge generated by this type of instrumentation will have wide applications in academic and industrial research.

A typical rheometer usually consists of two moving surfaces, such as concentric cylinders, that rotate to cause the fluid to deform. By measuring the force required to rotate the cylinders, it is possible to determine the mechanical properties of the fluid. It is usually impossible to see the flow in these geometries, and so it is assumed that the amount of deformation in the fluid between the surfaces is the same everywhere, as is the case for a Newtonian liquid such as water.

Not so with many non-Newtonian fluids, according to Helgeson.

"It gets much more complicated," he said. "Typically what happens is that you get a little region that yields so that it's flowing, and everything else is just sitting there or moving very slowly." More force does not always equal more flow, he added, until the yielded region grows to fill the fluid volume.

"This transition that goes from not flowing to flowing is important for a wide range of complex fluids," said Helgeson. And the details of flow in this process, he explained, are often inaccessible to rheometers, which are typically only sensitive to the fluid flowing right at the surfaces.

"One of the advances of this instrumentation we've developed with Anton Paar is the ability to directly visualize what's going on in the flow," Helgeson said. With the help of laser optics and light-scattering particles, researchers will be able to track the fluid deformation and use it to understand what is happening in the fluid's microstructure.

"If you want to engineer these fluids, you really need to be able to characterize what's going on in the flow to cause the macroscopic response that you measure," he said.

As manufacturing methods and materials become more sophisticated, this knowledge will become essential. For example, to be able to use new and different types of materials for 3D printers and additive manufacturing, the colloidal and polymeric inks used need to be able to flow through the nozzle with ease yet harden flawlessly to achieve the desired structure.

According to Helgeson, the partnership with Anton Paar is unusual in that UCSB researchers are having a hand in the creation of new instrumentation and measurement methods before they become commercially available.

"In that sense, the partnership is really a two-way street," he said. "The new rheometer provides us with state-of-the-art measurement capabilities, and at the same time we're providing new tools and analysis that others in the scientific and industrial community can use."

Polymers, for instance, such as the ones used in displays, organic photovoltaics and flexible electronics, need to have perfect molecular and atomic arrangements to be effective, so fabrication techniques involving flow have to be improved to achieve better performance and lower cost.

"You put these polymers through all sorts of extrusion, injection and coating processes, which have the potential to produce defects in the material that come from flow instabilities," Helgeson said. The new rheometer tools that Helgeson and Anton Paar are jointly developing will enable more direct measurement of these instabilities.

"That's really what this partnership and the new instrument are about: being able to not only come up with new techniques, but also drive their use and understanding in solving some of these problems," he explained.
-end-


University of California - Santa Barbara

Related Mechanical Properties Articles:

A mechanical trigger for toxic tumor therapy
Cell-killing chemotherapies are designed to shrink cancerous tumors by accumulating in their ill-formed blood and lymph vessels, delivering a toxic dose to the cancer cells.
Device designed to exploit scattering of light by mechanical vibrations
Researchers at the University of Campinas's Gleb Wataghin Physics Institute (IFGW-UNICAMP) in São Paulo State, Brazil, have theoretically developed a silicon photonic device with a diameter of approximately 10 microns (μm), equivalent to one tenth of the thickness of a human hair, that would enable optical and mechanical waves vibrating at tens of gigahertz (GHz) to interact.
Nearly one-quarter of patients say mechanical heart valve disturbs sleep
Nearly one-quarter of patients with a mechanical heart valve say it disturbs their sleep, according to research presented today at EuroHeartCare 2017.
Microdevice provides novel method of measuring cell mechanical properties
Researchers from Kumamoto University in Japan have developed a new method of measuring the Young's modulus of a cell.
Achieving near-perfect optical isolation using opto-mechanical transparency
Researchers from the University of Illinois at Urbana-Champaign have demonstrated a new level of optical isolation necessary to advance on-chip optical signal processing.
A low-cost mechanical device for minimally invasive surgery
Surgeons can now use a new type of mechanical instrument to perform complex, minimally invasive procedures, also known as laparoscopic surgery, thanks to researchers and small business entrepreneurs funded by the National Science Foundation (NSF).
New mechanical metamaterials can block symmetry of motion, findings suggest
Engineers and scientists at The University of Texas at Austin and the AMOLF institute in the Netherlands have invented the first mechanical metamaterials that easily transfer motion effortlessly in one direction while blocking it in the other.
Improving the mechanical properties of polymer gels through molecular design
Research conducted at Nagoya University has revealed that the strength of normally brittle polymer gels can be increased using a design in which mobile cross-linking units are threaded on a polymer.
Sealing properties and its influence factors of spherical mechanical seal
The spherical mechanical seal which can automatically adjust the contact state of sealing surfaces is proposed to replace the frequently used plane mechanical seal in order to solve the problems that when a marine stern shaft is bent with shafting misalignment and stern bearing wear factors, etc., the sealing properties of a plane mechanical seal is declined with the increase of both contact pressure and temperature of sealing surface.
Where cells go: Mechanical and chemical cues collaborate to guide them
Living cells respond to biochemical signals by moving toward those at higher concentration, a process carefully mapped out by biologists over the past several decades.

Related Mechanical Properties Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".