Nav: Home

Cells adapt ultra-rapidly to zero gravity

February 28, 2017

Mammalian cells are optimally adapted to gravity. But what happens in the microgravity environment of space if the earth's pull disappears? Previously, many experiments exhibited cell changes - after hours or even days in zero gravity. Astronauts, however, returned to Earth without any severe health problems after long missions in space, which begs the question as to how capable cells are of adapting to changes in gravity. Based on real-time readings on the ISS, UZH scientists can now reveal that cells are able to respond to changes in gravitational conditions extremely quickly and keep on functioning. Therefore, the study also provides direct evidence that certain cell functions are linked to gravity.

Test setup and measurement on the ISS

In contrast to space experiments, where analyses are conducted afterwards on Earth, the team headed by UZH scientists Oliver Ullrich and Cora Thiel opted for a different path. They geared their experimental design towards conducting direct measurements in space: From thawing the test cells to the measurements themselves, ESA astronaut Samantha Cristoforetti performed all the operations directly in the lab on the ISS. The data gathered on the space station was then transmitted to Earth. Rigorous internal and external controls excluded any influence other than gravity.

Cell adaptation in 42 seconds

The research team used the so-called oxidative burst - an old evolutionary mechanism to kill off bacteria via defense cells - to study how rat cells responded to changes in gravity. With the aid of centrifuges, Cristoforetti altered the gravitational conditions on the ISS, which enabled the team in the control center to track how the cells reacted. "Ultra-rapidly," explains Oliver Ullrich, a professor from the Institute of Anatomy at the University of Zurich. "Although the immune defense collapsed as soon as zero gravity hit, to our surprise the defense cells made a full recovery within 42 seconds." For Ullrich and Thiel, the direct evidence of a rapid and complete adaptation to zero gravity in less than a minute begs the question as to whether previous cell changes measured after hours or days were also the result of an adaptation process.

Good news for astronauts

"It seems paradoxical," says Thiel: "Cells are able to adapt ultra-rapidly to zero gravity. However, they were never exposed to it in the evolution of life on Earth. Therefore, the results raise more questions regarding the robustness of life and its astonishing adaptability." In any case, as far as Ullrich is concerned the result of the ISS experiment is good news for manned space flight: "There's hope that our cells are able to cope much better with zero gravity than we previously thought."
-end-
Literature:

Cora S. Thiel, Diane de Zélicourt, Svantje Tauber, Astrid Adrian, Markus Franz, Dana M. Simmet, Kathrin Schoppmann, Swantje Hauschild, Sonja Krammer, Miriam Christen, Gesine Bradacs, Katrin Paulsen, Susanne A. Wolf, Markus Braun, Jason Hatton, Vartan Kurtcuoglu, Stefanie Franke, Samuel Tanner, Samantha Cristoforetti, Beate Sick, Bertold Hock & Oliver Ullrich. Rapid adaptation to microgravity in mammalian macrophage cells. Scientific Reports 7, Article number: 43 (2017). February 27, 2017. DOI: 10.1038/s41598-017-00119-6

http://rdcu.be/pCOF

Space experiment

The research material used by Professor Ullrich and Doctor Thiel was transported to the ISS on the SpaceX-CRS-6 mission by a Falcon 9 rocket and the Dragon space station on April 14, 2015. The research mission was funded by the European Space Agency (ESA) and the German Aerospace Center (DLR).

After years of preparation, the ESA astronaut Samantha Cristoforetti conducted the experiments in the BIOLAB of the COLUMBUS Module on the ISS. The University of Zurich headed the experiment in collaboration with Otto-von-Guericke-University Magdeburg, the Technical University of Munich, Lucerne University of Applied Sciences and Arts, the European Space Agency (ESA), the German Aerospace Center (DLR) and NASA's Kennedy Space Center.

Contact:

Prof. Dr.med. Dr.rer.nat. Oliver Ullrich

Dr. rer.nat. Cora Thiel

Institute of Anatomy

University of Zurich

Phone: +41 44 635 40 60E-mail: oliver.ullrich@uzh.ch

University of Zurich

Related Space Station Articles:

Bacteria on the International Space Station no more dangerous than earthbound strains
Two particularly tenacious species of bacteria have colonized the potable water dispenser aboard the International Space Station (ISS), but a new study suggests that they are no more dangerous than closely related strains on Earth.
'Dust up' on International Space Station hints at sources of structure
In a lab on Earth, electrically charged dust generally lines up either along the downward pull of gravity or across it.
May the forest be with you: GEDI moves toward launch to space station
GEDI (pronounced like 'Jedi,' of Star Wars fame) is a first-of-its-kind laser instrument designed to map the world's forests in 3-D from space.
NASA's CATS concludes successful mission on space station
A spaceborne lidar instrument that fired more laser pulses than any previous orbiting instrument has ended its operations on the International Space Station, after a successful 33-month mission to measure clouds and tiny atmospheric particles that play key roles in Earth's climate and weather.
The bacterial community on the International Space Station resembles homes
Microbiologists at the University of California, Davis analyzed swabs taken by astronauts on the International Space Station (ISS) and compared them with samples from homes on earth as well as the Human Microbiome Project.
NASA watching Harvey from satellites and the International Space Station
NASA has a lot of resources providing information on Tropical Storm Harvey as it continues to drop tremendous, flooding rainfall on Texas and Louisiana.
New mission going to the space station to explore mysteries of 'cosmic rain'
The ongoing fires that have been plaguing British Columbia for most of the summer are causing air hazards across the province and even parts of the US.
Space station crew cultivates crystals for drug development
Crew members aboard the International Space Station will begin conducting research this week to improve the way we grow crystals on Earth.
Experiment aboard space station studies 'space weather'
To study conditions in the ionosphere, Cornell University research engineer Steven Powell and others in the College of Engineering have developed the FOTON (Fast Orbital TEC for Orbit and Navigation) GPS receiver.
Earth science on the Space Station continues to grow
Two new Earth science instruments are scheduled to make their way to the station Feb.
More Space Station News and Space Station Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.