Nav: Home

The moon formed inside a vaporized Earth synestia

February 28, 2018

A new explanation for the Moon's origin has it forming inside the Earth when our planet was a seething, spinning cloud of vaporized rock, called a synestia. The new model led by researchers at the University of California, Davis and Harvard University resolves several problems in lunar formation and is published Feb. 28 in the Journal of Geophysical Research - Planets.

"The new work explains features of the Moon that are hard to resolve with current ideas," said Sarah Stewart, professor of Earth and Planetary Sciences at UC Davis. "The Moon is chemically almost the same as the Earth, but with some differences," she said. "This is the first model that can match the pattern of the Moon's composition."

Current models of lunar formation suggest that the Moon formed as a result of a glancing blow between the early Earth and a Mars-size body, commonly called Theia. According to the model, the collision between Earth and Theia threw molten rock and metal into orbit that collided together to make the Moon.

The new theory relies instead on a synestia, a new type of planetary object proposed by Stewart and Simon Lock, graduate student at Harvard and visiting student at UC Davis, in 2017. A synestia forms when a collision between planet-sized objects results in a rapidly spinning mass of molten and vaporized rock with part of the body in orbit around itself. The whole object puffs out into a giant donut of vaporized rock.

Synestias likely don't last long - perhaps only hundreds of years. They shrink rapidly as they radiate heat, causing rock vapor to condense into liquid, finally collapsing into a molten planet.

"Our model starts with a collision that forms a synestia," Lock said. "The Moon forms inside the vaporized Earth at temperatures of four to six thousand degrees Fahrenheit and pressures of tens of atmospheres."

An advantage of the new model, Lock said, is that there are multiple ways to form a suitable synestia - it doesn't have to rely on a collision with the right sized object happening in exactly the right way.

Once the Earth-synestia formed, chunks of molten rock injected into orbit during the impact formed the seed for the Moon. Vaporized silicate rock condensed at the surface of the synestia and rained onto the proto-Moon, while the Earth-synestia itself gradually shrank. Eventually, the Moon would have emerged from the clouds of the synestia trailing its own atmosphere of rock vapor. The Moon inherited its composition from the Earth, but because it formed at high temperatures it lost the easily vaporized elements, explaining the Moon's distinct composition.
-end-
Additional authors on the paper are Michail Petaev and Stein Jacobsen at Harvard University, Zoe Leinhardt and Mia Mace at the University of Bristol, England and Matija Cuk, SETI Institute, Mountain View, Calif. The work was supported by grants from NASA, the U.S. Department of Energy and the UK's Natural Environment Research Council.

University of California - Davis

Related Moon Articles:

Astronaut urine to build moon bases
The modules that the major space agencies plan to erect on the Moon could incorporate an element contributed by the human colonizers themselves: the urea in their pee.
How moon jellyfish get about
With their translucent bells, moon jellyfish (Aurelia aurita) move around the oceans in a very efficient way.
Does crime increase when the moon is full?
Noting that anecdotal beliefs can affect public policies and practices, a 'pracademics' team from NYU's Marron Institute of Urban Management worked with public safety personnel to examine the commonly held axiom that crime rises with the full moon -- and found that the evidence is just not there.
Soil on moon and Mars likely to support crops
Researchers at Wageningen University & Research in the Netherlands have produced crops in Mars and moon soil simulant developed by NASA.
Are we prepared for a new era of field geology on the moon and beyond?
Space agencies must invest more resources on field geology training of astronauts to take full advantage of scientific opportunities on the moon and other planetary bodies, Kip Hodges and Harrison Schmitt urge, in an Editorial.
Modeling early meteorite impacts on the moon
A detailed reconstruction of meteorite impacts resolves a longstanding problem and gives new insight into how the moon formed.
Why does the moon smell like gunpowder? (video)
After walking on the Moon astronauts hopped back into their lunar lander, bringing Moon dust with them.
Formation of the moon brought water to Earth
As the only terrestrial planet, the Earth has a large amount of water and a relatively large moon, which stabilizes the Earth's axis.
The moon is quaking as it shrinks
A new analysis suggests that the moon is actively shrinking and producing moonquakes along thousands of cliffs called thrust faults spread over the moon's surface.
Magma is the key to the moon's makeup
For more than a century, scientists have squabbled over how the Earth's moon formed.
More Moon News and Moon Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.