Nav: Home

Storm waves can move boulders we thought only tsunamis had the power to shift

February 28, 2018

Oxford, Feb. 28, 2018 - It's not just tsunamis that can change the landscape: storms shifted giant boulders four times the size of a house on the coast of Ireland in the winter of 2013-14, leading researchers to rethink the maximum energy storm waves can have - and the damage they can do.

In a new paper in Earth Science Reviews, researchers from Williams College in the US show that four years ago, storms moved huge boulders along the west coast of Ireland. The same storms shifted smaller ones as high as 26 meters above high water and 222 meters inland. Many of the boulders moved were heavier than 100 tons, and the largest moved was 620 tons - the equivalent of six blue whales or four single-storey houses.

It was previously assumed that only tsunamis could move boulders of the size seen displaced in Ireland, but the new paper provides direct evidence that storm waves can do this kind of work. According to the UN, about 40 percent of the world's population live in coastal areas (within 100 meters of the sea), so millions of people are at risk from storms. Understanding how those waves behave, and how powerful they can be, is key for preparation. It is therefore important to know the upper limits of storm wave energy, even in areas where these kinds of extreme wave energies are not expected.

"The effect of the storms of winter 2013-14 was dramatic," said Dr. Rónadh Cox, Professor and Chair of Geosciences at Williams College and lead author of the study. "We had been studying these sites for a number of years, and realised that this was an opportunity to measure the coastal response to very large storm events."

In the summer after the storms, Prof. Cox and a team of seven undergraduate students from Williams College surveyed 100 sites in western Ireland, documenting with photos the displacement of 1,153 boulders. They measured the dimensions and calculated the mass of each boulder. They knew where 374 of the boulders had come from, so for those they also documented the distance travelled. The largest boulder, at 237-239 m3 was an estimated 620 tons; the second biggest, at 180-185 m3, was about 475 tons. These giant rocks were close to sea level (although above the high tide mark). At higher elevations, and at greater distances inland, smaller boulders moved upwards and inland.

Analysis of this information showed that the waves had most power at lower elevations and closer to the shore. While this may not be surprising, the sheer energy of the waves and their ability to move such large boulders was - and this evidence proves that not only tsunami but also storm waves can move such large objects.

"These data will be useful to engineers and coastal scientists working in other locations," said Prof. Cox. "Now that we know what storm waves are capable of, we have much more information for policy makers who are responsible for preparing coastal communities for the impact of high-energy storms."
-end-
Notes for editors

The article is "Extraordinary boulder transport by storm waves (west of Ireland, winter 2013-2014), and criteria for analysing coastal boulder deposits," by Rónadh Cox, Kalle L. Jahn, Oona G. Watkins and Peter Cox. It appears in Earth Science Reviews, volume 177, (February 2018), published by Elsevier.

This study is published under an open access license and can be downloaded by following the DOI link above.

About Earth Science Reviews

Earth Science Reviews publishes review articles dealing with all aspects of earth sciences, and is an important vehicle for allowing readers to see their particular interest related to the earth sciences as a whole. The readership is more diverse than that of specialist journals: as well as research scientists, also students, government agencies involved in programme support and management and in environmental assessment and control, private industries concerned with planetary resources, and the independent consultant.

About Elsevier

Elsevier is a global information analytics business that helps institutions and professionals progress science, advance healthcare and improve performance for the benefit of humanity. Elsevier provides digital solutions and tools in the areas of strategic research management, R&D performance, clinical decision support, and professional education; including ScienceDirect, Scopus, Scival, ClinicalKey and Sherpath. Elsevier publishes over 2,500 digitized journals, including The Lancet and Cell, more than 35,000 e-book titles and many iconic reference works, including Gray's Anatomy. Elsevier is part of RELX Group, a global provider of information and analytics for professionals and business customers across industries. http://www.elsevier.com

Media contact

Kristian Wilson
Elsevier
44-1865-843-817
k.wilson@elsevier.com

Elsevier

Related Blue Whales Articles:

A better pregnancy test for whales
To determine whale pregnancy, researchers have relied on visual cues or hormone tests of blubber collected via darts, but the results were often inconclusive.
Seeing blue after the little blue pill: Visual disturbances in Viagra users
Sildenafil, a common treatment for erectile dysfunction, is typically safe with limited side effects.
Why whales are so big, but not bigger
Whales' large bodies help them consume their prey at high efficiencies, a more than decade-long study of around 300 tagged whales now shows, but their gigantism is limited by prey availability and foraging efficiency.
Whales stop being socialites when boats are about
The noise and presence of boats can harm humpback whales' ability to communicate and socialise, in some cases reducing their communication range by a factor of four.
Endangered whales react to environmental changes
Some 'canaries' are 50 feet long, weigh 70 tons, and are nowhere near a coal mine.
Stranded whales detected from space
A new technique for analysing satellite images may help scientists detect and count stranded whales from space.
Researchers use drones to weigh whales
Researchers from Aarhus Institute of Advanced Studies (AIAS) in Denmark and Woods Hole Oceanographic Institution (WHOI) in the US devised a way to accurately estimate the weight of free-living whales using only aerial images taken by drones.
Modeling predicts blue whales' foraging behavior, aiding population management efforts
Scientists can predict where and when blue whales are most likely to be foraging for food in the California Current Ecosystem, providing new insight that could aid in the management of the endangered population in light of climate change and blue whale mortality due to ship strikes.
New research helps predict locations of blue whales so ships can avoid them
A new model based on daily oceanographic data and the movements of tagged whales has opened the potential for stakeholders to see where in the ocean endangered blue whales are most likely to be so that ships can avoid hitting them.
Plastic in Britain's seals, dolphins and whales
Microplastics have been found in the guts of every marine mammal examined in a new study of animals washed up on Britain's shores.
More Blue Whales News and Blue Whales Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.