Nav: Home

Scientists pinpoint single letter of genetic code that makes African Salmonella so dangerous

February 28, 2018

Scientists have identified a single genetic change in Salmonella that is playing a key role in the devastating epidemic of bloodstream infections currently killing around 400,000 people each year in sub-Saharan Africa.

Invasive non-typhoidal Salmonellosis (iNTS) occurs when Salmonella bacteria, which normally cause gastrointestinal illness, enter the bloodstream and spread through the human body. The African iNTS epidemic is caused by a variant of Salmonella Typhimurium (ST313) that is resistant to antibiotics and generally affects individuals with immune systems weakened by malaria or HIV.

In a new study published in Proceedings of the National Academy of Sciences of the United States, a team of researchers from the Universities of Birmingham and Liverpool have identified a specific genetic change, or single-nucleotide polymorphism (SNP), that helps the African Salmonella to survive in the human bloodstream.

SNPs represent a change of just one letter in the DNA sequence and there are thousands of SNP differences between different types of Salmonella. Until now, it has been hard to link an individual SNP to the ability of bacteria to cause disease.

Professor Ian Henderson, Director of the Institute of Microbiology and Infection at the University of Birmingham, said: "Invasive non-typhoidal Salmonellosis is a major and previously neglected tropical disease responsible for an estimated 390,000 deaths per year in Africa.

"Despite the availability of more than 100,000 Salmonella genomes, it has proven challenging for scientists to find specific genetic changes that can give us the clues to explain how this disease develops.

"In this study, we developed a type of genetic analysis called transcriptomics to analyse 1,000 different SNPs that affect important Salmonella genes. "We found a single nucleotide difference that is unique to the African ST313 strain and causes it both to be so virulent and also prevents the disease from being killed in the bloodstream."

The scientists then used an advanced genetic technique to switch the SNP found in the African strain to the version found in the type of Salmonella that causes food poisoning and gastroenteritis globally. Finally, they used an animal infection model to show that the bacteria with the altered SNP had lost their ability to cause disease.

Professor Jay Hinton, of the University of Liverpool, said: "Pinpointing this single letter of DNA is an exciting breakthrough in our understanding of why African Salmonella causes such a devastating disease, and helps to explain how this dangerous type of Salmonella evolved.

"We've developed a new investigative approach to understand bacterial infection, which is the culmination of six years of work. This combination of genomics and transcriptomics could bring new insights to other important pathogens, and prepare us for future epidemics."

Professor Melita Gordon, a University of Liverpool clinician-scientist working in Malawi who was involved in the project, said: "The ability of iNTS Salmonella strains to cause such serious disease leads to devastating and frequently fatal consequences for very young children, and for adults who may be the chief breadwinners in their homes and communities.

"We see iNTS disease placing an enormous burden on thinly-stretched local health facilities and hospitals in Malawi, particularly because diagnosis is difficult, and treatment options are limited. It is now urgent that a vaccine is developed to combat this dangerous infection."
-end-
The study received funding support from the Wellcome Trust and was carried out in collaboration with the Liverpool School of Tropical Medicine.

For press enquiries please contact Emma McKinney, Communications Manager (Health Sciences), University of Birmingham, tel: 44-0-121-414-6681 or email: e.j.mckinney@bham.ac.uk. For out of hours enquiries email pressoffice@contacts.bham.ac.uk or please call 44-0-7789-921-165.

Notes to editors:
  • The University of Birmingham is ranked amongst the world's top 100 institutions. Its work brings people from across the world to Birmingham, including researchers, teachers and more than 5,000 international students from over 150 countries.

  • Hammarlöf et al (2018). 'The role of a single non-coding nucleotide in the evolution of an epidemic African clade of Salmonella'. Proceedings of the National Academy of Sciences of the United States. DOI: 10.1073/pnas.1714718115.


University of Birmingham

Related Bacteria Articles:

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.