Nav: Home

Newly discovered CRISPR mechanism may help prevent dangerous errors

February 28, 2018

COLUMBUS, Ohio-Even as CRISPR gene-editing technology is offering insights into genetic diseases, researchers are discovering new things about how it actually works.

In the first of two papers just published in the Journal of the American Chemical Society (JACS), researchers at The Ohio State University report that they've figured out the mechanism by which the CRISPR gene-editing enzyme Cas9 determines where and when to cut DNA strands--a discovery that could help prevent gene-cutting errors.

In the second paper, they overturn the widely held belief that Cas9 cleaves DNA evenly--that is, cuts both sides of the DNA "ladder" to the same length--by demonstrating that it actually trims one side shorter than the other. That discovery could come in handy for the field of gene-editing and for manipulating DNA for biotechnology applications.

Zucai Suo, professor of chemistry and biochemistry at Ohio State, leads the project.

"The gene-editing enzyme Cas9 has been widely and successfully used in biotech and agriculture as well as drug discovery," Suo said. "I hope that our work paves the way for scientists to minimize or eliminate gene-editing errors and discover new applications for Cas9."

The CRISPR system mimics a technique that bacteria use against attacking viruses, and is considered revolutionary because it is the first technology that can edit the DNA of a living organism with ease. The Cas9 enzyme can be tailored to target and cut out specific genes or insert new ones. It's already being used to treat cancer and viral infections, and researchers hope that it will one day cure a host of genetic ailments.

But while CRISPR works very well, the mechanism by which Cas9 determines which genes to cut and which to leave alone is not entirely understood.

Ohio State doctoral student Austin Raper, lead author of the first JACS paper, explained that CRISPR rarely targets unintended genes. But such errors can have very serious consequences when they do happen. For instance, if Cas9 were to accidentally target and cut a tumor suppressor gene from someone's DNA, that person would be much more likely to develop cancer.

"If CRISPR is to advance to its full potential, it is paramount that scientists fully understand how Cas9 functions and determine why it sometimes makes these errors," Raper said. "Our new result is exciting because now we understand how Cas9 decides to cleave DNA, which is fundamental in the quest to prohibit unintended, off-target DNA cutting."

Raper and his co-authors determined that two different parts of the large and labyrinthine Cas9 molecule communicate with each other to set the location and timing of a cut. As the first part of the molecule moves to cut its respective strand of DNA, it subtly changes shape and nudges the second part, triggering it to cut the second strand.

The first cut happens quickly. The second cut happens much more slowly, and wouldn't happen at all without the trigger, the researchers concluded. Now the same group is studying how non-target genes may affect the timing and location of cuts.

The second JACS paper concerns some unusual behavior of the Cas9 enzyme that nobody had noticed before.

Doctoral student Anthony Stephenson and his co-authors examined what Cas9 does after it cuts DNA. Previously, researchers believed that the enzyme would grab onto DNA, make one clean cut and then let go. But the Ohio State researchers found that the enzyme stays attached to the DNA long enough to take a second snip out of just one half of the DNA strand, leaving edges of different lengths.

Why? Cas9 carries a strong positive charge and DNA carries a strong negative charge, Stephenson explained, so the two form a very strong bond. Meanwhile, the guide RNA molecule that directs Cas9 to a particular DNA sequence becomes strongly paired with one side of the DNA strand.

"In other words, it is not easy for Cas9 to untangle itself from the DNA. So while Cas9 remains stuck to the DNA following the initial double-stranded DNA cut, it continues to trim small pieces of DNA off the loose DNA strand," Stephenson said.

The team will now explore ways of preventing or even enhancing this behavior to benefit the field of gene-editing, perhaps allowing for more efficient gene insertion. The staggered edges make the DNA sticky, allowing for multiple pieces of DNA to be attached together in a specific order and orientation, Stephenson added.
-end-
Funding for the work came from a Pelotonia Idea Research Program Award from The Ohio State University Comprehensive Cancer Center.

Contact: Zucai Suo, 614-688-3706; Suo.3@osu.edu

Written by Pam Frost Gorder, 614-292-9475; Gorder.1@osu.edu

Ohio State University

Related Dna Articles:

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.
In one direction or the other: That is how DNA is unwound
DNA is like a book, it needs to be opened to be read.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
DNA structure impacts rate and accuracy of DNA synthesis
DNA sequences with the potential to form unusual conformations, which are frequently associated with cancer and neurological diseases, can in fact slow down or speed up the DNA synthesis process and cause more or fewer sequencing errors.
Changes in mitochondrial DNA control how nuclear DNA mutations are expressed in cardiomyopathy
Differences in the DNA within the mitochondria, the energy-producing structures within cells, can determine the severity and progression of heart disease caused by a nuclear DNA mutation.
More DNA News and DNA Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 2: Every Day is Ignaz Semmelweis Day
It began with a tweet: "EVERY DAY IS IGNAZ SEMMELWEIS DAY." Carl Zimmer – tweet author, acclaimed science writer and friend of the show – tells the story of a mysterious, deadly illness that struck 19th century Vienna, and the ill-fated hero who uncovered its cure ... and gave us our best weapon (so far) against the current global pandemic. This episode was reported and produced with help from Bethel Habte and Latif Nasser. Support Radiolab today at Radiolab.org/donate.