Nav: Home

Flipside of a dinosaur mystery: 'Bloat-and-float' explains belly-up ankylosaur fossils

February 28, 2018

Ottawa, Feb. 28, 2018 - A scientist with the Canadian Museum of Nature has answered a long-standing mystery about why fossils of ankylosaurs -- the "armoured tanks" of the dinosaur world -- are mainly found belly-side up. In doing so, he has ruled out three other competing theories involving clumsiness, predation, and the effects of bloating as seen in armadillo roadkills.

Palaeontologist Dr. Jordan Mallon says the evidence points to a phenomenon called "bloat-and-float", whereby the bloating carcasses of ankylosaurs would end up in a river, flip belly-side up due to the weight of their heavy armour, and then float downstream. The remains would wash ashore, where decomposition and then fossilization would seal the dinosaur remains in their upside-down death pose.

"Textbooks have touted that ankylosaur fossils are usually found upside down, but no one has gone back and checked the records to make sure that's the case," explains Mallon. The observations date from the 1930s. Indeed, the fossils of two star ankylosaurs described in 2017, Borealopelta from Alberta and Zuul from Montana, were found upside down.

Mallon examined 32 ankylosaur fossils from Alberta (of which 26 were found belly up), photos of specimens, field notes, and other signs such as erosion of the exposed surface, sun bleaching, and the presence of lichens.

The results are published in the online journal Palaeogeography, Palaeoclimatology, Palaeoecology. Collaborators included armadillo experts Drs. Colleen McDonough and Jim Loughry of Valdosta State University in Georgia, and Dr. Don Henderson, with Drumheller Alberta's Royal Tyrrell Museum of Palaeontology.

Mallon ruled out three other theories before settling on "bloat-and-float" to explain the preponderance of the belly-up remains.

"One idea was that ankylosaurs were simply clumsy, tripping over themselves or rolling down hills and ending up dying that way," he says. But since ankylosaurs existed for about 100 million years, clumsy habits would not fit with their apparent evolutionary success.

Another theory was that ankylosaurs were prey for carnivores, such as hungry tyrannosaurids, which would flip the armoured dinosaurs onto their backs to get at the soft underbelly. "If this was true, we would expect to see signs of bite marks, especially on upside-down ones, but we saw marks on only one specimen," explains Mallon. "Since they were armoured, it makes sense that ankylosaurs were not regularly preyed upon, and the fossil evidence in museum collections supports this."

The third idea, proposed in the 1980s, is an analogy to what happens with some armadillo roadkills -- as the carcass rots and bloats, gas accumulates, and the limbs would splay out, eventually rolling the animal onto its back.

The challenge was to test this hypothesis. Enter McDonough and Loughry who are experts on modern armadillos, which also have an armoured shell. Over the summer of 2016, they studied 174 examples of dead armadillo. "Sure enough, the data show that they do not occur more often on their backs," says Mallon. The pair even examined dead armadillos placed in plexiglass cases in their backyard to keep away scavengers. Regardless of the positioning of the carcasses, bloating did not cause them to roll over onto their backs.

That left the "bloat-and-float" hypothesis as the most likely explanation for the presence of upside-down fossils. To study this, Mallon turned to computer simulations developed by Dr. Don Henderson, who specializes in the floating behaviour of animals in water.

Ankylosaur fossils in North America are found in river channel deposits, and in the Late Cretaceous Period these animals would have been living along a coastline of what is known as the Western Interior Seaway.

"We designed these models of ankylosaurs, both clubless and clubbed, and looked at their floating behavior," explains Mallon. The computer modelling showed that the animals would tend to flip upside down quite easily in water. Nodosaurids, which are ankylosaurs with no tail clubs, would flip most easily at the slightest tilt; the ankyosaurids (with clubbed tails), were more stable but could still be flipped.

"So 'bloat-and-float'" fits with their known environment, and this research helps inform about the transport behavior of dead dinosaurs, which is important to know when studying fossil ecosystems. Ultimately, this is a classic case study of the scientific method: examining alternative hypotheses, finding ways to test them, and ruling them out one-by-one. What you are left with at the end is the most likely explanation."
-end-
About the Canadian Museum of Nature

The Canadian Museum of Nature is Canada's national museum of natural history and natural sciences. The museum provides evidence-based insights, inspiring experiences and meaningful engagement with nature's past, present and future. It achieves this through scientific research, a 14 million specimen collection, education programs, signature and travelling exhibitions, and a dynamic web site, nature.ca.

Information for media:

Dan Smythe
Media Relations
Canadian Museum of Nature
613-566-4781; 613-698-9253 (cell)
dsmythe@mus-nature.ca

Canadian Museum of Nature

Related Fossils Articles:

Ancestor of all animals identified in Australian fossils
A team led by UC Riverside geologists has discovered the first ancestor on the family tree that contains most animals today, including humans.
Metabolic fossils from the origin of life
Since the origin of life, metabolic networks provide cells with nutrition and energy.
Fossils of the future to mostly consist of humans, domestic animals
In a co-authored paper published online in the journal Anthropocene, University of Illinois at Chicago paleontologist Roy Plotnick argues that the fossil record of mammals will provide a clear signal of the Anthropocene era.
Exceptional fossils may need a breath of air to form
New research led by The University of Texas at Austin has found that a long held belief by paleontologists about the fossilization process may be wrong.
New 'king' of fossils discovered in Australia
Fossils of a giant new species from the long-extinct group of sea creatures called trilobites have been found on Kangaroo Island, South Australia.
Two tiny beetle fossils offer evolution and biogeography clues
Recently, an international team led by Dr. CAI Chenyang, from the Nanjing Institute of Geology and Palaeontology of the Chinese Academy of Sciences, reported two new and rare species of the extant family Clambidae from Burmese amber: Acalyptomerus thayerae Cai and Lawrence, 2019, and Sphaerothorax uenoi Cai and Lawrence, 2019.
Newly described fossils could help reveal why some dinos got so big
A new, in-depth anatomical description of the best preserved specimens of a car-sized sauropod relative from North America could help paleontologists with unraveling the mystery of why some dinosaurs got so big.
Lilly Pilly fossils reveal snowless Snowy Mountains
Leaf fossils discovered high in Australia's Snowy Mountains have revealed a past history of warmer rainforest vegetation and a lack of snow, in contrast with the alpine vegetation and winter snow-covered slopes of today.
Molecular fossils confirm Dickinsonia as one of Earth's earliest animals
By identifying specific biomarkers preserved alongside fossils of oval-shaped life forms from the Ediacaran Period, fossils from which are typically considered one of the greatest mysteries in paleontology, researchers say the ovular organism is not a fungus or protist, as some have thought, but an early animal.
Fossils reveal diverse mesozoic pollinating lacewings
A research group led by professor WANG Bo from the Nanjing Institute of Geology and Palaeontology has provided new insight into the niche diversity, chemical communication, and defense mechanisms of Mesozoic pollinating insects.
More Fossils News and Fossils Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.