Nav: Home

New mathematical framework establishes the risk of dramatic collapses of real networks

February 28, 2018

A theoretical framework explaining the risk of rare events causing major disruptions in complex networks, such as a blackout in a power grid, has been proposed by a mathematician at Queen Mary University of London.

Rare events can abruptly dismantle a network with much more severe consequences than usual and understanding their probability is essential in reducing the chances of them happening.

A network is formed by a set of nodes and the links between them. For instance power grids are networks whose nodes are power stations connected by the electrical grid. Similarly an ecological network, which the framework could be applied to, is formed by species connected by ecological interactions like a predator-prey relationship.

Usually if some of the nodes are damaged, networks like these are robust enough to remain functional but on rare occasions specific damage can lead to the dismantling of the whole network and cause major blackouts or ecological regime shifts, such as an ecological collapse.

Mathematicians often use percolation theory, a well-developed branch of applied mathematics that studies the response of a network to the damage of a random fraction of its nodes, to shed light on these phenomena. However, this theory is able only to characterise the average response of a network to random damage. Therefore the prediction of the average behaviour cannot be used to estimate the risk of a network collapse as a result of a rare event.

This study establishes a large deviation theory of percolation that characterises the response of a network to rare events. The proposed theoretical framework correctly captures the effect of rare damage configurations that can be observed in real networks. Interestingly the work reveals that discontinuous percolation transitions - abrupt collapses of a network - are occurring as soon as rare events are taken into consideration.

The theoretical framework could enable strategies to be developed to sustain networks by identifying which nodes need to be preserved to prevent a collapse.

Ginestra Bianconi, author of the study, said: "There is an urgent need to evaluate the risk of collapse in response to rare configurations of initial damage. This result sheds light on the hidden fragility of networks and their risk of a sudden collapse and could be especially useful for understanding mechanisms to avoid the catastrophic dismantling of real networks."

She added: "It is important to estimate the risk of a dramatic cascade of failures because you want to reduce the risk. In the design of a power-grid that must provide the energy to an entire country you want to avoid rare events in which you have major blackouts, or in the design of preservation strategies of an ecosystem that is currently diversified and prosperous you want to know what is the probability of a sudden ecological collapse and mass extinction. Therefore it is necessary to understand this risk of these events happening."

The present large deviation study of percolation considers exclusively node percolation on single networks like those mentioned. However, Ginestra Bianconi suggests the outlined methodology could be extended to the study of more detailed models of propagation of event failures.

Queen Mary University of London

Related Power Grid Articles:

Grid reliability under climate change may require more power generation capacity
Researchers applied a new modeling approach for long-term planning of the U.S. power grid under future climate and water resource conditions.
Energy-efficient power electronics -- Gallium oxide power transistors with record values
The Ferdinand-Braun-Institut (FBH) has now achieved a breakthrough with transistors based on gallium oxide (beta-Ga2O3).
NYS winters could pose solar farm 'ramping' snag for power grid
By adding utility-scale solar farms throughout New York state, summer electricity demand from conventional sources could be reduced by up to 9.6 percent in some places.
Solar power -- largest study to date discovers 25 percent power loss across UK
Regional 'hot spots' account for the power slump and these are more prevalent in the North of England than in the south
How will climate change stress the power grid? Hint: Look at dew point temperatures
A new study suggests the power industry is underestimating how climate change could affect the long-term demand for electricity in the United States.
Protecting the power grid: Advanced plasma switch for more efficient transmission
Article describes PPPL research to help General Electric design an advanced and cost-effective power switch to protect the US electric grid.
Toward a secure electrical grid
Professor João Hespanha suggests a way to protect autonomous grids from potentially crippling GPS spoofing attacks.
Evaluation method for the impact of wind power fluctuation on power system quality
Abrupt changes of wind power generation output are a source of severe damage to power systems.
Nuclear power shutdowns won't spike power prices
Despite economic woes that could shutter two of Pennsylvania's nuclear power plants -- which generate 6 percent of the state's power -- power prices will remain steady due to low natural gas prices, according to Seth Blumsack, associate professor of energy policy and economics, Penn State.
Novel power meter opens the door for in-situ, real-time monitoring of high-power lasers
A group of researchers from National Institute of Standards and Technology (NIST) have developed a smaller, faster and more sensitive laser power meter in the form of a folding mirror they call a 'smart mirror.'
More Power Grid News and Power Grid Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at