Nav: Home

Glowing molecule can reveal live tuberculosis bacteria

February 28, 2018

A molecule made in the lab may change the way tuberculosis is diagnosed in the field.

Chemically tweaking a sugar molecule known as trehalose lets it slip inside the bacteria that causes tuberculosis (TB) and glow. The method offers a quick, simple way to detect the pernicious bug, and may help counter TB, a deadly lung infection that's particularly common in developing countries.

Howard Hughes Medical Institute (HHMI) Investigator Carolyn Bertozzi and colleagues report the work February 28, 2018, in the journal Science Translational Medicine.

Despite its devastating toll on health, the bacteria behind TB, Mycobacterium tuberculosis, can be hard to spot. Current tests rely on chemical stains that have been around for decades and can be finicky. Estimates put the sensitivity of these stains anywhere from 32 percent to 94 percent.

Better detection methods are sorely needed to combat TB, which killed more than 1.7 million people worldwide in 2016, says Bertozzi, of Stanford University. "If you can't even get an accurate diagnosis, how do you treat people?"

As a chemist, Bertozzi, along with her colleagues, studies the molecules that make up bacterial cell walls. Early discoveries by her lab revealed that some bacteria use sugar molecules called trehalose as building blocks. Bertozzi found the cell walls of M. tuberculosis particularly compelling. "There's some really interesting biology there." She began working with a team of scientists who held personal stakes in tuberculosis research. After a chance encounter at a meeting at Janelia Research Campus, Bertozzi decided to collaborate with study coauthor Professor Bavesh Kana of the University of Witwatersrand in Johannesburg, South Africa.

The researchers realized that trehalose molecules - those cell wall building blocks - might offer a way to flag living M. tuberculosis cells. But first, the team needed to find a chemical beacon that would make the flag visible. One chemical, called DMN, seemed to fit the bill. DMN can glow under certain wavelengths of light - but only when it is out of water. Because the M. tuberculosis cell wall contains a membrane that's a "thick layer of grease," Bertozzi says, it's the perfect place for DMN to light up.

That insight - that DMN was "off" until a cell tucks it into its membrane - was key, Bertozzi says. "It's such a simple thing, but simple things like that make all the difference between something that can be deployed or not."

After linking trehalose to DMN in the lab, the researchers tested their hybrid molecule, called DMN-Tre, on an M. tuberculosis relative. Just as they had hoped, the bacteria grabbed the molecule and, within minutes, incorporated it into their cell membranes, where it began to glow under a fluorescent microscope.

In tests on sputum samples from 16 people with TB, DMN-Tre picked up M. tuberculosis cells in all of the samples. The new technique performed similarly to the standard - but more complex and time-consuming - labeling method based on the Auramine O stain, a dye that sticks to acids in bacterial cell walls.

Other tests showed that DMN-Tre is selective to Actinobacteria, the bacterial phylum that includes M. tuberculosis. Human cells and other types of bacteria, both of which are plentiful in sputum samples, don't incorporate the molecule, the researchers found.

Unlike existing TB detection methods, DMN-Tre can also distinguish cells that are metabolically active from those that are not. Because the molecule relies on bacteria to actively incorporate it into the membrane, only healthy cells are labeled, whereas cells that are compromised by drug treatment do not label as well. That property may allow clinicians to monitor how well treatments are working in people, and perhaps even test whether certain mixtures of drugs would work against specific strains of M. tuberculosis.

More work remains before the molecule is ready for use in the field, Bertozzi says. But she's optimistic that the new method could prove useful in the global fight against TB.
-end-
M. Kamariza et al. "Rapid detection of Mycobacterium tuberculosis in sputum with a solvatochromic trehalose probe." Science Translational Medicine.

Howard Hughes Medical Institute

Related Bacteria Articles:

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.