Nav: Home

The fine-tuning of two-dimensional materials

February 28, 2018

A new understanding of why synthetic 2-D materials often perform orders of magnitude worse than predicted was reached by teams of researchers led by Penn State. They searched for ways to improve these materials' performance in future electronics, photonics, and memory storage applications.

Two-dimensional materials are films only an atom or two thick. Researchers make 2-D materials by the exfoliation method -- peeling a slice of material off a larger bulk material -- or by condensing a gas precursor onto a substrate. The former method provides higher quality materials, but is not useful for making devices. The second method is well established in industrial applications, but yields low performance 2-D films.

The researchers demonstrated, for the first time, why the quality of 2-D materials grown by the chemical vapor deposition method have poor performance compared to their theoretical predictions. They report their results in a recent issue of Scientific Reports.

"We grew molybdenum disulfide, a very promising 2-D material, on a sapphire substrate," said Kehao Zhang, a doctoral candidate of Joshua Robinson, associate professor of materials science and engineering, Penn State. "Sapphire itself is aluminum oxide. When the aluminum is the top layer of the substrate, it likes to give up its electrons to the film. This heavy negative doping -- electrons have negative charge -- limits both the intensity and carrier lifetime for photoluminescence, two important properties for all optoelectronic applications, such as photovoltaics and photosensors."

Once they determined that the aluminum was giving up electrons to the film, they used a sapphire substrate that was cut in such a way as to expose the oxygen rather than the aluminum on the surface. This enhanced the photoluminescence intensity and the carrier lifetime by 100 times.

In related work, a second team of researchers led by the same Penn State group used doping engineering that substitutes foreign atoms into the crystal lattice of the film in order to change or improve the properties of the material. They reported their work this week in Advanced Functional Materials.

"People have tried substitution doping before, but because the interaction of the sapphire substrate screened the effects of the doping, they couldn't deconvolute the impact of the doping," said Zhang, who was also the lead author on the second paper.

Using the oxygen-terminated substrate surface from the first paper, the team removed the screening effect from the substrate and doped the molybdenum disulfide 2-D film with rhenium atoms.

"We deconvoluted the rhenium doping effects on the material," said Zhang. "With this substrate we can go as high as 1 atomic percent, the highest doping concentration ever reported. An unexpected benefit is that doping the rhenium into the lattice passivates 25 percent of the sulfur vacancies, and sulfur vacancies are a long-standing problem with 2-D materials."

The doping solves two problems: It makes the material more conductive for applications like transistors and sensors, and at the same time improves the quality of the materials by passivating the defects called sulfur vacancies. The team predicts that higher rhenium doping could completely eliminate the effects of sulfur vacancies.

"The goal of my entire work is to push this material to technologically relevant levels, which means making it industrially applicable," Zhang said.
-end-
Contributors to the Scientific Reports paper, "Deconvoluting the Photonic and Electronic Response of 2-D Materials: The Case of MoS2," are Zhang, Brian Bersch, Ganesh Bhimanapati, Baoming Wang, Ke Wang, Michael Labella, Teague Williams, Amanul Haque and Joshua Robinson, all of Penn State; Nicholas Borys, Edward Barnard and P. James Schuck, the Molecular Foundry, Lawrence Berkeley National Laboratory; and Ke Xu and Susan Fullerton-Shirey, University of Pittsburgh.

Contributors to the Advanced Functional Materials paper, "Tuning the Electronic and Photonic Properties of Monolayer MoS2 via In Situ Resubstitutional Doping," are K. Zhang, B. Bersch, Natalie Briggs, Shruti Subamania and J.A. Robinson, Penn State; Rafik Addou, Christopher Cormier, Chenxi Zhang, Kyeongjae Cho and Robert Wallace, University of Texas at Dallas; Jaydeep Joshi and Patrick Vora, George Mason University; and K. Xu, Ke Wang and S. Fullerton-Shirey, University of Pittsburgh.

Joshua Robinson is associate director of the Center for 2-Dimensional and Layered Materials (2-DLM) and co-director of the NSF-I/UCRC Center for Atomically Thin Multifunctional Coatings (ATOMIC), both at Penn State.

The National Science Foundation, the Semiconductor Research Corporation, Defense Advanced Research Projects Agency, the U.S. Department of Energy, the Nanoelectronics Research Initiative, and the National Institute of Standards and Technology supported portions of this work.

Penn State

Related Molybdenum Disulfide Articles:

Russian scientists found an effective way to obtain fuel for hydrogen engines
A catalyst is needed for a chemical process that releases hydrogen from an H2O molecule.
Silver sawtooth creates valley-coherent light for nanophotonics
Scientists at the University of Groningen used a silver sawtooth nanoslit array to produce valley-coherent photoluminescence in two-dimensional tungsten disulfide flakes at room temperature.
Physicist obtain atomically thin molybdenum disulfide films on large-area substrates
Researchers have managed to grow atomically thin films of molybdenum disulfide spanning up to several tens of square centimeters.
A flaky option boosts organic solar cells
Tungsten disulfide helps to channel charge in flexible photovoltaics.
Ammonia synthesis made easy with 2D catalyst
Rice University researchers use their knowledge of 2D nanomaterials and develop a 'green' method for the small-scale synthesis of ammonia.
Epitaxially-grown molybdenum oxide advances as a bulk-like 2D dielectric layer
Scalable 2D-type MoO3 nanosheets were synthesized via van der Waal epitaxy growth method.
Suspended layers make a special superconductor
In superconducting materials, an electric current will flow without any resistance.
Brain-inspired computing could tackle big problems in a small way
While computers have become smaller and more powerful and supercomputers and parallel computing have become the standard, we are about to hit a wall in energy and miniaturization.
New flatland material: Physicists obtain quasi-2D gold
Researchers from the MIPT Center for Photonics and 2D Materials have synthesized a quasi-2D gold film, showing how materials not usually classified as two-dimensional can form atomically thin layers.
Formation of the moon brought water to Earth
As the only terrestrial planet, the Earth has a large amount of water and a relatively large moon, which stabilizes the Earth's axis.
More Molybdenum Disulfide News and Molybdenum Disulfide Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.