Nav: Home

Assessing quantum dot photoemissions

February 28, 2018

Recent research from Kumamoto University in Japan has revealed that polyoxometalates (POMs), typically used for catalysis, electrochemistry, and photochemistry, may also be used in a technique for analyzing quantum dot (QD) photoluminescence (PL) emission mechanisms.

Quantum dots (QDs) are small, semiconducting nanocrystals or particles typically between two to ten nanometers in size. Discovered almost 40 years ago, their strong photoluminescent properties are a function of their size and shape making them useful for optical applications ranging from bioimaging to light emitting diodes. Advances in high-quality QD research in the last ten years has produced highly luminescent but somewhat unstable QDs that also, unfortunately, use toxic or rare elements. Efforts to create stable QDs without these toxic or expensive elements has been a driving force in recent research.

To address these issues, researchers have been investigating how to change the size, morphology, and PL of tin dioxide (SnO2) to produce cheap, stable, and nontoxic colloidal semiconductor nanocrystals for various applications. Interestingly, the optical properties of SnO2 have been found to be effected by defects in both the bulk material and the QDs themselves.

Researchers from Professor Kida's Chemical Engineering Laboratory at Kumamoto University synthesized SnO2 QDs using a liquid phase method to produce QDs of various morphologies. The sizes of the QDs were controlled by changing the temperature during synthesis. All of the QDs produced a blue PL when exposed to UV light (370 nm) and QDs 2 nm in size produced the best intensity. To examine the PL properties and mechanisms related to defects in the synthesized QDs, the researchers used materials (POMs) that quench florescence through excited state reactions.

POMs quenched emissions of the SnO2 QDs at peak intensities (401, 438, and 464 nm) but, to the surprise of the researchers, a previously unseen peak at 410 nm was revealed.

"We believe that the emission at 410 nm is caused by a bulk defect, which cannot be covered by POMs, that causes what is known as radiative recombination--the spontaneous emission of a photon with a wavelength related to the released energy," said project leader Professor Tetsuya Kida. "This work has shown that our technique is effective in analyzing PL emission mechanisms for QDs. We believe it will be highly beneficial for future QD research."
-end-
This research paper was posted online in the journal Advanced Functional Materials on 30 Nov. 2017 with a final revision published on 22 Jan 2018.

[Source]

Pramata, A. D., Suematsu, K., Quitain, A. T., Sasaki, M., & Kida, T. (2017). Synthesis of Highly Luminescent SnO2 Nanocrystals: Analysis of their Defect-Related Photoluminescence Using Polyoxometalates as Quenchers. Advanced Functional Materials, 28(4), 1704620. doi:10.1002/adfm.201704620

Kumamoto University

Related Emission Articles:

Atomic fingerprint identifies emission sources of uranium
Depending on whether uranium is released by the civil nuclear industry or as fallout from nuclear weapon tests, the ratio of the two anthropogenic, i.e. man-made, uranium isotopes 233U and 236U varies.
Tailoring spontaneous infrared emission of HgTe quantum dots with laser-printed plasmonic arrays
Near-to-mid infrared colloidal quantum dots offer a promising platform towards the realization of many useful devices including emitters, detectors, security and sensor systems.
Simultaneous emission of orthogonal handedness in circular polarization
Both right- and left-handed circularly polarized light were simultaneously generated from a single device, paving the way for novel applications in biosensors and organic LEDs.
Ultrafast stimulated emission microscopy of single nanocrystals in Science
ICFO researchers report on a new ultrafast stimulated emission microscopy technique that allows imaging of nano-objects and investigating their dynamics.
Caught in afterglow: 1st detection of Inverse Compton emission from dying gamma-ray burst
When a star dies, it emits intense flashes of light called a gamma-ray burst.
SUTD physicists unlock the mystery of thermionic emission in graphene
SUTD researchers discover a new theory that paves the way for the design of better graphene electronics and energy converters.
Curbing diesel emission could reduce big city mortality
US cities could see a decline in mortality rates and an improved economy through midcentury if federal and local governments maintain stringent air pollution policies and diminish concentrations of diesel freight truck exhaust, according to Cornell University research.
Study offers verdict for China's efforts on coal emissions
Researchers from China, France and the USA have evaluated China's success in stemming emissions from its coal-fired power plants (CPPs).
The secret of fireworm is out: molecular basis of its light emission
A collaborative effort by an international team of scientists led to to the discovery of new luciferin from fireworm.
Staging β-amyloid pathology with amyloid positron emission tomography
This multicenter study used in vivo β-amyloid cerebrospinal fluid, a biomarker of Alzheimer disease, and positron emission tomography findings to track progression of Alzheimer disease over six years among study participants.
More Emission News and Emission Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.