Nav: Home

'Amazing snapshots' plumb volcanic depths

February 28, 2019

Research shedding light on the internal "plumbing" of volcanoes may help scientists better understand volcanic eruptions and unrest.

The University of Queensland-led study analysed crystals in Italy's famous Mount Etna to reveal how quickly magma moves to the surface.

Dr Teresa Ubide, from UQ's School of Earth and Environmental Sciences, said the research would provide a better understanding of volcanic systems and improve frameworks for monitoring volcanoes.

"By looking at the so-called magma plumbing systems - I think of them as the 'inner personalities' of volcanoes - we can better interpret the signs of magma movement under our feet," Dr Ubide said.

"The new information on magma transport prior to past volcanic eruptions can provide context to help better respond to future monitoring signals, like seismic measurements from earthquakes."

Dr Ubide and her team have analysed variations in the chemical composition of volcanic crystals, which form in a chemical pattern known as "sector zoning".

"Volcanologists and mineralogists have observed sector zoning in crystals for decades, noticing that it might develop when crystals form rapidly," she said.

"But because the exact origin and implications of sector-zoned crystals in magma were poorly understood, they were typically disregarded in the study of pre-eruptive processes inside volcanoes.

"Now we've discovered that they not only record detailed magmatic histories and eruption triggers, but might also provide information on the velocity of magma transport to the surface."

The research, which builds on previous work analysing volcanic crystals, used a high-tech ultraviolet laser - similar to the technology used for eye surgery - at UQ's Radiogenic Isotope Facility.

"We've been using a 'cold' beam laser to remove a thin layer from the surface of the crystals," Dr Ubide said.

"Then this tiny amount of material is put into a mass spectrometer, an instrument that measures the composition of 'trace' elements, reading elements that might weigh lower than 0.1 per cent of the original object.

"We found that the changes in the trace elements in these crystals are extremely sensitive to the processes that take place inside volcanoes, like magma storage and cooling, magma mixing, magma transport and magma's ascent to the surface.

"It's an amazing snapshot of what is happening inside volcanoes, providing key insights into their internal plumbing system and helping us better understand these incredible natural wonders."

The research, published in collaboration with the Italian Volcanological Institute INGV-Rome and Sapienza University Rome, can be found in Geochimica et Cosmochimica Acta (DOI: 10.1016/j.gca.2019.02.021).
-end-


University of Queensland

Related Magma Articles:

3D magnetotelluric imaging reveals magma recharging beneath Weishan volcano
Researches have succeeded in obtaining a high-resolution 3D resistivity model of approximately 20 km depth beneath the Weishan volcano in the Wudalianchi volcanic field (WVF) for the first time.
Study proves that magma chambers can be totally molten
The paper shows that basaltic magma chambers may develop as large bodies of crystal-free melts in the Earth's crust.
New study takes the pulse of a sleeping supervolcano
Under the volcanoes in the Andes where Chile, Argentina and Bolivia meet, there is a gigantic reservoir of molten magma.
How and when was carbon distributed in the Earth?
A magma ocean existing during the core formation is thought to have been highly depleted in carbon due to its high-siderophile (iron loving) behavior.
Research shows why there's a 'sweet spot' depth for underground magma chambers
Computer models show why eruptive magma chambers tend to reside between six and 10 kilometers underground.
'Crystal clocks' used to time magma storage before volcanic eruptions
The molten rock that feeds volcanoes can be stored in the Earth's crust for as long as a thousand years, a result which may help with volcanic hazard management and better forecasting of when eruptions might occur.
Magma is the key to the moon's makeup
For more than a century, scientists have squabbled over how the Earth's moon formed.
'Amazing snapshots' plumb volcanic depths
Research shedding light on the internal 'plumbing' of volcanoes may help scientists better understand volcanic eruptions and unrest.
Volcanoes fed by 'mush' reservoirs rather than molten magma chambers
Volcanoes are not fed by molten magma formed in large chambers finds a new study, overturning classic ideas about volcanic eruptions.
Smaller, more frequent eruptions affect volcanic flare-ups
Eruption patterns in a New Zealand volcanic system reveal how the movement of magma rising through the crust leads to smaller, more frequent eruptions.
More Magma News and Magma Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: IRL Online
Original broadcast date: March 20, 2020. Our online lives are now entirely interwoven with our real lives. But the laws that govern real life don't apply online. This hour, TED speakers explore rules to navigate this vast virtual space.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Falling
There are so many ways to fall–in love, asleep, even flat on your face. This hour, Radiolab dives into stories of great falls.  We jump into a black hole, take a trip over Niagara Falls, upend some myths about falling cats, and plunge into our favorite songs about falling. Support Radiolab by becoming a member today at Radiolab.org/donate.