Nav: Home

Exiled planet linked to stellar flyby 3 million years ago

February 28, 2019

Some of the peculiar aspects of our solar system -- an enveloping cloud of comets, dwarf planets in weird orbits and, if it truly exists, a possible Planet Nine far from the sun -- have been linked to the close approach of another star in our system's infancy flung things helter-skelter.

But are stellar flybys really capable of knocking planets, comets and asteroids askew, reshaping entire planetary systems?

UC Berkeley and Stanford University astronomers think they have now found a smoking gun.

A planet orbiting a young binary star may have been perturbed by another pair of stars that skated too close to the system between 2 and 3 million years ago, soon after the planet formed from a swirling disk of dust and gas.

If confirmed, this bolsters arguments that close stellar misses help sculpt planetary systems and may determine whether or not they harbor planets with stable orbits.

"One of the mysteries arising from the study of exoplanets is that we see systems where the planets are misaligned, even though they are born in a flat, circular disk," said Paul Kalas, a UC Berkeley adjunct professor of astronomy. "Maybe a cosmic tsunami hit these systems and rearranged everything about them, but we haven't had proof. Our paper gives rare observational evidence for one of these flybys gently influencing one of the planetary systems in the galaxy."

Astronomers are already searching for a stellar flyby in our solar system's past, but since that likely happened 4.6 billion years ago, most of the evidence has gone cold. The star system that the astronomers studied, identified only by the number HD 106906 and located about 300 light years from Earth in the direction of the constellation Crux, is very young, only about 15 million years old.

Kalas and Robert De Rosa, a former UC Berkeley postdoc who is now a research scientist at Stanford's Kavli Institute for Particle Astrophysics and Cosmology, describe their findings in a paper accepted for publication in the Astronomical Journal and now available online.

Rogue stars

Kalas, who studies young, newly formed planetary systems to try to understand what happened in the early years of our own solar system, first focused on HD 106906 in 2015 after it was found to have a massive planet in a highly unusual orbit. The planet, dubbed HD 106906 b, has a mass of about 11 Jupiters, and it orbits HD 106906 -- recently revealed to be a binary star -- in an orbit tipped about 21 degrees from the plane of the disk that contains all the other material around the star. Its current location is at least 738 times farther from its star than Earth is from the sun, or about 18 times farther from its star than Pluto is from the sun.

Kalas used both the Gemini Planet Imager on the Gemini Telescope in the Chilean Andes and the Hubble Space Telescope to look more closely at HD 106906 and discovered that the star has a lopsided comet belt, as well. The planet's strange orbit and the fact that the dust disk itself is asymmetrical indicated that something had disrupted the young system.

Kalas and his colleagues, including De Rosa, proposed that the planet had been kicked out of its solar system by interactions with another as-yet-unseen planet in the system or by a passing star. Kalas and De Rosa now believe that both happened: The planet was kicked into an eccentric orbit when it came dangerously close to the central binary star, a scenario proposed in 2017 by theorist Laetitia Rodet and her collaborators from the Grenoble Observatory in France. Repeated gravitational kicks from the binary would have quickly ejected the planet into interstellar space, but the passing stars rescued the planet by nudging its orbit to a safer distance from the binary.

The Gaia space observatory gave them the data they needed to test their hypothesis. Gaia, launched in 2012 by the European Space Agency, collects precise measurements of distance, position and motion for 1.3 billion stars in the Milky Way Galaxy, a catalog 10,000 times larger than Gaia's predecessor, Hipparcos.

Kalas and De Rosa gathered Gaia information on 461 stars in the same cluster as HD 106906 and calculated their positions backward in time--reversed the cosmic clock, so to speak--and discovered that another binary star system may have approached close enough 3 million years ago to alter the planetary system.

"What we have done here is actually find the stars that could have given HD 106906 b the extra gravitational kick, a second kick so that it became long-lived, just like a hypothetical Planet Nine would be in our solar system," Kalas said.

They also found also that the binary star came in on a trajectory that was within about 5 degrees of the system's disk, making it even more likely that the encounter had a strong and lasting impact on HD 106906.

Such double kicks may be important to stabilizing planets, asteroids and comets around stars, Kalas said.

"Studying the HD 106906 planetary system is like going back in time to watch the Oort cloud of comets forming around our young sun," he said. "Our own giant planets gravitationally kicked countless comets outward to large distances. Many were ejected completely, becoming interstellar objects like ?Oumuamua, but others were influenced by passing stars. That second kick by a stellar flyby can detach a comet's orbit from any further encounters with the planets, saving it from the prospect of ejection. This chain of events preserved the most primitive solar system material in a deep freeze far from the sun for billions of years."

Kalas hopes that future observations, such as an updated catalog of Gaia measurements, will clarify the significance of the flyby on HD 106906.

"We started with 461 suspects and discovered two that were at the scene of the crime," he said. "Their exact role will be revealed as we gather more evidence."
-end-
The work was supported by the National Science Foundation (AST-1518332), National Aeronautics and Space Administration (NNX15AC89G) and Nexus for Exoplanet System Science (NExSS), a research coordination network sponsored by NASA's Science Mission Directorate (NNX15AD95G).

University of California - Berkeley

Related Solar System Articles:

From rocks in Colorado, evidence of a 'chaotic solar system'
Plumbing a 90 million-year-old layer cake of sedimentary rock in Colorado, a team of scientists from the University of Wisconsin-Madison and Northwestern University has found evidence confirming a critical theory of how the planets in our solar system behave in their orbits around the sun.
Why are there different 'flavors' of iron around the Solar System?
New work from Carnegie's Stephen Elardo and Anat Shahar shows that interactions between iron and nickel under the extreme pressures and temperatures similar to a planetary interior can help scientists understand the period in our Solar System's youth when planets were forming and their cores were created.
Does our solar system have an undiscovered planet? You can help astronomers find out
ASU's Adam Schneider and colleagues are hunting for runaway worlds in the space between stars, and citizen scientists can join the search with a new NASA-funded website.
Rare meteorites challenge our understanding of the solar system
Researchers have discovered minerals from 43 meteorites that landed on Earth 470 million years ago.
New evidence on the formation of the solar system
International research involving a Monash University scientist is using new computer models and evidence from meteorites to show that a low-mass supernova triggered the formation of our solar system.
Planet Nine could spell doom for solar system
The solar system could be thrown into disaster when the sun dies if the mysterious 'Planet Nine' exists, according to research from the University of Warwick.
Theft behind Planet 9 in our solar system
Through a computer-simulated study, astronomers at Lund University in Sweden show that it is highly likely that the so-called Planet 9 is an exoplanet.
Studying the solar system with NASA's Webb Telescope
NASA's James Webb Space Telescope will look across vast distances to find the earliest stars and galaxies and study the atmospheres of mysterious worlds orbiting other stars.
'This solar system isn't big enough for the both of us.' -- Jupiter
It's like something out of an interplanetary chess game. Astrophysicists at the University of Toronto have found that a close encounter with Jupiter about four billion years ago may have resulted in another planet's ejection from the Solar System altogether.
IBEX sheds new light on solar system boundary
In 14 papers published in the October 2015 Astrophysical Journal Supplement, scientists present findings from NASA's Interstellar Boundary Explorer, or IBEX, mission providing the most definitive analyses, theories and results about local interstellar space to date.

Related Solar System Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...