Nav: Home

In-depth insights into glass corrosion

February 28, 2019

Silicate glass has many applications, including the use as a nuclear waste form to immobilize radioactive elements from spent fuel. However, it has one disadvantage - it corrodes when it comes into contact with aqueous solutions. Scientists at the University of Bonn were able to observe in detail which processes take place. The results have now been published in the journal Nature Materials.

The mineralogists and geochemists at the University of Bonn used the so-called confocal Raman spectroscopy for their study, where a laser beam is focused on a sample through a microscope. The light interacts with the molecules in the material, causing them to vibrate. Individually backscattered photons change their color depending on the structure and the chemical properties of the sample. This phenomenon is known as the Raman effect. The originally monochromatic light now also contains other color components. The color spectrum provides detailed insights into the structure and composition of the matter that is excited by the laser beam.

What makes this method even more interesting: The laser can be focused to a specific point in the space with an accuracy of a few thousandths of a millimeter. This facilitates studying the sample point by point, but not only on its surface: If the sample is transparent, the beam can also be focused into internal areas. "And that's exactly what we did," explains Prof. Dr. Thorsten Geisler-Wierwille from the Institute for Geosciences and Meteorology at the University of Bonn.

Opal layer at the glass surface

The researchers used a small piece of silicate glass as a sample that reacted with an aqueous solution in a specially developed heating vessel. It was possible to move the vessel in steps of one thousandth of a millimeter under the Raman microscope - to the right, left, forward, and backward, but also up and down. "We scanned the glass point by point and recorded a Raman spectrum while it reacted with the solution," says Lars Dohmen, who is currently completing his doctorate under the supervision of Geisler-Wierwille. "This allowed us to investigate the reaction almost in real time. This currently works at temperatures of up to 150 degrees, which, for instance, are also expected in a nuclear repository."

The results indicate that silicate glass quickly dissolves when it comes into contact with aqueous solutions - almost like a sugar cube in a cup of coffee. However, while the sugar molecules are quickly distributed evenly in the water by diffusion, this is not the case during glass corrosion: Part of the resulting dissolved silica seems to remain near the surface of the glass. At some point, its concentration becomes so high that it solidifies.

"We then also speak of silica precipitation," explains Prof. Geisler-Wierwille. "Silica molecules in the solution interlink to form aggregates only a few millionths of a millimeter in size, which are deposited at the glass surface and mature into an opal-like state." However, the researchers were able to show that this opal layer does not provide perfect protection against water. Instead, the dissolution-precipitation front continues to eat its way into the glass. As a result, the glass is gradually replaced by opal, although at a decreasing velocity. "For the first time, we have experimentally demonstrated that a boundary solution with dissolved silica forms between the opal layer and the underlying glass," explains Geisler-Wierwille. "As the thickness of the opal layer increases, it increasingly prevents the silica solution from being transported away from the reaction interface. "We suspect that it eventually gels to a viscous mass, which dramatically slows down glass dissolution."

In the study, this was already the case after 25 thousandths of a millimeter. "Even though the reaction became very slow, it cannot be ruled out that this corrosion process will release radioactive elements over long periods of time," emphasizes Geisler-Wierwille. However, glasses used for the vitrification of nuclear waste are by far more stable against water than the investigated glass. "We want to extend our experiments to these glass types in the near future," emphasizes the researcher. Studies with silicate glass in which radioactive elements are already incorporated are also planned. The researchers and their partners want to investigate the influence of self-irradiation damage in the glass on its corrosion resistance. "The current work should mainly prove that our new method can provide far-reaching insights into these processes," says Geisler-Wierwille.

The level of interest shown by industry in this work is also reflected in the financing of the pilot project: One of the sponsors of the study is the renowned glass manufacturer Schott AG.
-end-
Publication: Thorsten Geisler, Lars Dohmen, Christoph Lenting and Moritz B. K. Fritzsche: Real-time in situ observations of reaction and transport phenomena during silicate glass corrosion by fluid-cell Raman spectroscopy. Nature Materials, https://doi.org/10.1038/s41563-019-0293-8

Contact:

Prof. Dr. Thorsten Geisler-Wierwille
Institute for Geosciences and Meteorology (formerly Steinmann Institute)
University of Bonn
Tel. +49 (0)228/73 2733
E-mail: tgeisler@uni-bonn.de

University of Bonn

Related Nuclear Waste Articles:

Deep learning expands study of nuclear waste remediation
A research collaboration between Berkeley Lab, Pacific Northwest National Laboratory, Brown University, and NVIDIA has achieved exaflop performance with a deep learning application used to model subsurface flow in the study of nuclear waste remediation.
Nuclear physics -- probing a nuclear clock transition
Physicists have measured the energy associated with the decay of a metastable state of the thorium-229 nucleus.
Electrospun sodium titanate speeds up the purification of nuclear waste water
Electrospun sodium titanate speeds up the purification of water based on selective ion exchange -- effectively extracts radio-active strontium.
New EU 'urban mining' tools map valuable resources in e-waste, scrap vehicles, mine waste
Expert European organizations have united to create the world's first database of valuable materials available for 'urban mining' from scrap vehicles, spent batteries, waste electronic and electrical equipment, and mining wastes.
Mainz physicists propose a new method for monitoring nuclear waste
New scientific findings suggest neutrino detectors may play an important role in ensuring better monitoring and safer storage of radioactive material in nuclear waste repository sites.
Rutgers-led research could revolutionize nuclear waste reprocessing and save money
Seeking a better way to capture radioactive iodides in spent nuclear reactor fuel, Rutgers-New Brunswick scientists have developed an extremely efficient 'molecular trap' that can be recycled and reused
New 'molecular trap' cleans more radioactive waste from nuclear fuel rods
A new method for capturing radioactive waste from nuclear power plants is cheaper and more effective than current methods, a potential boon for the energy industry, according to new research published in the journal Nature Communications.
Discovery could reduce nuclear waste with improved method to chemically engineer molecules
A new chemical principle discovered by scientists at Indiana University has the potential to revolutionize the creation of specially engineered molecules whose uses include the reduction of nuclear waste and the extraction of chemical pollutants from water and soil.
Potato waste processing may be the road to enhanced food waste conversion
With more than two dozen companies in Pennsylvania manufacturing potato chips, it is no wonder that researchers in Penn State's College of Agricultural Sciences have developed a novel approach to more efficiently convert potato waste into ethanol.
129I waste used to track ocean currents for 15,000 km after discharge from nuclear plants
Radioactive 129I has traveled the equivalent of a third of the way round the globe, since being released from nuclear fuel reprocessing plants in the UK and France.
More Nuclear Waste News and Nuclear Waste Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab