Nav: Home

Researchers reveal unexpected genome-wide off-target mutations caused by cytosine base editing

February 28, 2019

Chinese scientists have found that cytosine base editors (BE3 and HF1-BE3) induce genome wide off-target mutations.

A research team led by Prof. GAO Caixia of the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences performed a comprehensive investigation of the off-target mutations of BE3, HF1-BE3 and ABE using whole genome sequencing (WGS) in rice, an important crop species.

Single nucleotide alterations are an important cause of human disease and trait variations in economic organisms. Genetic engineering of single nucleotide polymorphisms by nucleobase editors holds great promise for gene therapy, which could potentially cure human disease and improve traits in crop plants.

Researchers have already developed cytosine and adenine base editors (CBE and ABE, respectively). The base editors are fusions of a nickase-type Cas9 protein with a cytosine deaminase or an adenine deaminase, and have been found to catalyze the conversion of either C>T or A>G in the target site of a single guide RNA (sgRNA).

Although on-target conversions by CBE and ABE are found in many organisms, their off-target effects have not been systematically assessed at the whole-genome level.

Past analysis of base editing specificity has largely been confined to the target-like sites predicted using in silico software These target-like sites are generally low in number and limited in genomic distribution.

Considering that ectopic expression of cytosine deaminase in E. coli, yeast cells and human cells has been found to elicit genome-wide deamination events, it has become necessary and urgent to examine the specificity of base editors at the whole-genome level and in an unbiased manner.

The researchers chose three widely used base editors: BE3, high-fidelity BE3 (HF1-BE3) and ABE. A total of 14 base editors construct targeting 11 genomic sites were transformed into rice via Agrobacterium transformation.

Regenerated T0 plants edited by BE3, HF1-BE3 or ABE and those transformed with the base editors but without sgRNAs, together with two control groups of plants (i.e., wild-type rice and null-segregate of transgenic rice), were analyzed by WGS.

The base editor groups and control group did not differ substantially in the number of indels found.

In contrast, the BE3 and HF1-BE3 groups had significantly more single-nucleotide variants (SNVs) than the ABE and control groups.

The average numbers of C>T single nucleotide variants (SNVs) per plant were: 203 (BE3); 347 (HF1-BE3); 88 (ABE); and 105 (control group).

Consequently, C>T SNVs in the BE3 and HF1-BE3 plants were 94.5% and 231.9% more frequent than in the control plants, respectively.

Notably, treatment of rice plants with BE3 and HF1-BE3 in the absence of sgRNA also caused high numbers of C>T SNVs. Furthermore, the great majority of the extra C>T mutations conferred by BE3 and HF1-BE3 did not match the off-target sites predicted using an in silico software (Cas-OFFinder).

All the SNVs, as well as C>T SNVs, were found to be distributed throughout the rice genome, indicating a genome-wide occurrence. Mapping with transcriptome data showed that the high numbers of C>T SNVs associated with BE3 and HF1-BE3 occurred more frequently in transcribed genic regions, where single-stranded DNA is generated owing to active transcription.

Altogether, the data generated by Dr. GAO's team suggest that BE3 and HF1-BE3, but not ABE, induce genome-wide off-target mutations in rice.

These off-target mutations, being mainly C>T SNVs and enriched in transcribed genic regions, are not predicted by the current in silico approach. The base conversion unit containing cytosine deaminase is likely responsible for the high number of off-target SNVs elicited by BE3 and HF1-BE3, and needs to be optimized for increasing the specificity of cytosine base editors.

"Base editors represent an appealing tool for producing the precise genetic variants needed in plant breeding. The specificity of these editors is of paramount importance because off-target mutations can be deleterious. We revealed that current BE3 or HF1-BE3 cause unexpected and unpredictable genome-wide off-target mutations in plants, highlighting the urgency of optimizing the specificity of this type of editor," said Dr. GAO.

This work, entitled "Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice," will be published in Science.
This research was supported by the National Natural Science Foundation of China, the National Key Research and Development Program of China, and the Chinese Academy of Sciences.

Chinese Academy of Sciences Headquarters

Related Genome Articles:

Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.
Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.
A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.
Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.
Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.
A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.
How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.
Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.
Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.
Why do we need one pair of genome?
Scientists have unraveled how the cell replication process destabilizes when it has more, or less, than a pair of chromosome sets, each of which is called a genome -- a major step toward understanding chromosome instability in cancer cells.
More Genome News and Genome Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at